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Zero-shot Learning with Transferred Samples
Yuchen Guo, Guiguang Ding, Jungong Han, and Yue Gao

Abstract—By transferring knowledge from the abundant la-
beled samples of known source classes, zero-shot learning (ZSL)
makes it possible to train recognition models for novel tar-
get classes that have no labeled samples. Conventional ZSL
approaches usually adopt a two-step recognition strategy, in
which the test sample is projected into an intermediary space
in the first step, and then the recognition is carried out by
considering the similarity between the sample and target classes
in the intermediary space. Due to this redundant intermediate
transformation, information loss is unavoidable, thus degrading
the performance of overall system. Rather than adopting this two-
step strategy, in this paper, we propose a novel one-step recogni-
tion framework that is able to perform recognition in the original
feature space by using directly trained classifiers. To address the
lack of labeled samples for training supervised classifiers for
the target classes, we propose to transfer samples from source
classes with pseudo labels assigned, in which the transferred
samples are selected based on their transferability and diversity.
Moreover, to account for the unreliability of pseudo labels of
transferred samples, we modify the standard SVM formulation
such that the unreliable positive samples can be recognized
and suppressed in the training phase. The entire framework is
fairly general with the possibility of further extensions to several
common ZSL settings. Extensive experiments on four benchmark
datasets demonstrate the superiority of the proposed framework,
compared to the state-of-the-art approaches, in various settings.

Index Terms—Zero-shot Learning, Transfer Learning, Robust
SVM, Inductive Learning, Transductive Learning, Experiment

I. INTRODUCTION

WHEN training a supervised classifier, sufficient labeled

samples for target classes are required in the conven-

tional supervised learning framework [1]. However, collecting

and labeling a large quantity of samples is quite expensive

in many cases. For instance, many objects “in the wild”

follow a long-tailed distribution such that they do not occur

frequently enough to collect and label a large set of represen-

tative exemplars to build the corresponding recognizers [2].

To address this problem, zero-shot learning (ZSL), which

transfers knowledge from abundantly labeled source classes

to help build classifiers for target classes that have no labeled

samples available, has recently attracted considerable attention

from computer vision and machine learning communities [3].

The task of ZSL is generally described as follows. There

are no labeled samples for target classes but abundant labeled

samples for source classes in the training phase, where source

classes and target classes are different but related via some
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Fig. 1: Two existing ZSL frameworks. Both of them adopt a

two-step strategy. Firstly, the test image is transformed into a

intermediary (semantic/distribution) space. Secondly, the final

prediction for target classes is generated by considering the

relationship between the sample and target classes in the space.

auxiliary information. ZSL constructs a classifier to predict the

presence or absence of target classes for a test sample. The

key to ZSL is how to effectively transfer knowledge between

source classes and target classes. Existing ZSL approaches

generally follow two kinds of two-step frameworks based on

what relationship between the classes is given. The first is

embedding-space based approaches [4], [5], [6], [7], [8], [9],

[10], [11], [12] in which each class/label is represented by an

attribute vector that represents the shared attributes between

classes [4] or a word semantic embedding [5] learned from a

large text corpus . In this way, both source and target classes

are embedded into a shared vector space. Then, by utilizing the

fully labeled samples from source classes, a sample embedding

function can be learned to project a sample from its feature

space into the shared embedding space. Because the classes

are related in the shared space, the function learned from the

source classes can also work for the target classes. In the test

stage, the learned function, in turn, projects a given test sample

into the embedding space, on which the similarity/distance

between target classes can be measured. Differently, class-

similarity based approaches subtly explore the availability of

the similarity among all source and target classes [3], [13],

[14]. Specifically, a n-way classifier for the source classes

is learned from the labeled data at first. Then given a test
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Fig. 2: Overview of the proposed sample-transfer based framework. In the training stage, we compute the transferability of

each source sample for each target class via the embedding space or the class similarity. Based on the transferability and

diversity, some source samples are selected for each target class and assigned by the corresponding pseudo labels. Then with

the transferred samples and pseudo labels, we can train a supervised classifier to perform sample-to-class classification in one

step. In the test stage, the classifier takes a target sample as the input and directly outputs the prediction on the target classes.

sample, its probability distribution on the source classes can

be produced by the learned classifier. Based on the class

similarity, the probability distribution on the target classes

is computed. The basic ideas of these two frameworks are

illustrated in Fig. 1(a) and Fig. 1(b) respectively, on which it

is clear that they both adopt a two-step strategy and there is

a need for an intermediate transformation in the test stage.

A. Motivation and Contribution

Despite the fact that the intermediate transformation effi-

ciently bridges these two steps, this additive procedure in-

evitably causes the information loss, thus degrading the per-

formance of overall system. In this paper, we propose a novel

one-step ZSL framework which directly predicts the class of a

sample without using the intermediary space in the test stage.

Just like in the conventional supervised learning, the sample-

to-class prediction is performed directly in the original feature

space by normal classifiers. Without using the intermediary

space in our framework, the unnecessary information leak can

be avoided, thus achieving better performance. However, it has

to confront the problem that no labeled sample is available for

the target classes. To address this problem, as opposed to the

class-based transfer in the existing approaches, we propose

a novel sample-based transfer method for training, in which

some samples belonging to the source classes are selected and

assigned with pseudo labels for each target class. Having the

transferred samples and their corresponding pseudo labels in

place enables any supervised learning algorithms, e.g., SVM,

to train one-step classifiers for the target classes. Here, it is

noted that our approach also adopts an embedding space-like

or class similarity-like intermediate space for training in order

to be compatible to the most existing settings. However, such

a space is not required in the online test phase at all, since our

classifier can directly predict the labels for the target samples,

which is completely different from existing ZSL approaches.

We briefly illustrate the whole proposed framework in Fig. 2.

Specifically, we have to tackle two problems arisen in our

proposed framework. Firstly, we need a metric that helps select

proper samples from the source classes for pseudo labeling.

In our design, both transferability and diversity are taken into

account, in which the former considers the probabilities of

a source sample being assigned to different classes while

the latter one takes care of the distribution diversity of the

selected samples. Here, transferability reflects whether we

should transfer a source sample into a target class. In fact,

a sample labeled as one class may have high probability to

be another class too. For instance, an image showing a man

riding a horse and labeled as “human”, can also be labeled

as “horse” and even “grass”. In addition, a proper “tiger”

image can also contribute to building a classifier that intends

to distinguish “lion” from some other kinds of animals. It is

believed that such a scheme is very logical because human

being often uses one category to deduce another one as long

as they share the same characteristics. The transferability is

measured by the probability that it belongs to a target class

via the auxiliary information, i.e., embedding space or class

similarity. We also consider the diversity with the objective

of selecting samples that have less redundancy. The reason

can be explained in the following example. Suppose that there

is a high transferability image, it is very likely that another

image similar to it will also have high transferability. If they

are both selected, the transferred samples will be redundant

and thus cannot comprehensively capture the characteristics

of the target class. Therefore, we require the selected samples

to be diverse to some extent. The second problem is the label

noise due to the fact that the pseudo labels are not the true



3

labels. To alleviate the influence of the label noise on classifier

training, we propose to modify the objective function of the

SVM classifier which results in a more robust SVM classifier.

In summary, we make the following contributions in this paper:

1. Unlike existing two-step frameworks, we propose a novel

one-step framework with transferred samples. The classifiers

are directly trained in the original feature space using pseudo

labels as in conventional supervised learning. In the test stage,

such classifiers allow to directly predict the labels from test

samples without using an intermediate space, which helps to

avoid the unnecessary information loss in the whole procedure.

2. To select good samples for transferring and pseudo

labeling, we consider the transferability and the diversity of the

selected samples. The selection is formulated as a quadratic

optimization problem and an efficient solution based on the

augmented Lagrange multiplier framework [15] is proposed.

3. To cope with the label noise existing in the pseudo

labels, we modify the standard SVM and adopt a more robust

formulation that is able to suppress the unreliability of the

transferred positive samples, thereby yielding better results.

4. The framework is generic in the sense that it can be easily

extended to various settings including both inductive ones and

transductive ones. To this end, our system selectively takes

either class embedding or class similarity depending on the

settings for training . To the best of our knowledge, this is the

first ZSL framework that can be applied to all these settings.

5. We conduct extensive experiments on several benchmark

datasets. The results demonstrate that the proposed one-step

framework outperforms state-of-the-art two-step approaches.

II. RELATED WORK

A. Problem and Notation

The problem of ZSL is defined as follows. We have a

set of source classes Cs = {cs1, ..., c
s
ks
} together with ns la-

beled source samples Ds = {(xs1,y
s
1), ..., (x

s
ns
,ysns

)}, where

xsi ∈ R
d is the feature vector and ysi ∈ {0, 1}

ks is the

corresponding label vector which has ysij = 1 if the sample

i belongs to class csj or 0 otherwise. We are given some

target samples Dt = {xt1, ...,x
t
nt
} from kt target classes

Ct = {ct1, ..., c
t
kt
} satisfying Cs ∩ Ct = ∅, in which no label

information about the samples is given. The goal of ZSL is to

build classification models which can predict the label c(xti)
given xti with no labeled training data for target classes. In the

inductive setting, the unlabeled samples from the target classes

are not available in the training stage, whereas they do appear

in the transductive setting [8]. Because the source classes

and target classes are different, some auxiliary information

is required for knowledge transfer. As introduced in Section

I, there are two kinds of relationships to connect them. The

first is class embedding where each class ci ∈ Cs ∪ Ct has

a corresponding embedding vector ai ∈ R
q from a shared

attribute space [4] or word vector space [5]. The second is

class similarity that can be formulated as a similarity graph G

where gij denotes the similarity between class ci and cj from

Cs ∪ Ct. Note that most of the existing approaches focus on

only one of the aforementioned settings, while our framework

can be applied to all the settings mentioned above.

B. Related Work

Transfer Learning has been used and achieved state-of-the-

art performance in many applications, like data retrieval [16],

[17], object detection [18], and multispectral imagery change

detection [19]. In this paper we focus on the zero-shot setting,

and thus we introduce the related works for this problem.

With the problem and notations, the embedding-space based

ZSL approaches can be formulated as the following function:

c(xt) = argminc∈Ct dis(ϕ(xt), ψ(ac)) (1)

where dis(·, ·) is a distance or similarity measure, ϕ(xt) is

a sample projection function to the embedding space and

ψ(ac) is a class projection function which transforms the

embedding vector in some ways. Because ψ(ac) is fixed for

a test sample, classifying xt consists of two steps. Firstly,

the sample is projected into the intermediate space by ϕ.

Secondly, the distance to each target class is measured in

the intermediate space. Existing works distinguish from each

other by the specific choices of ϕ, ψ, and dis(·, ·). In Direct

Attribute Prediction [6], they adopted linear classifiers, iden-

tity function, and Euclidean distance respectively. In Cross-

modal Transfer [5], nonlinear projection, identity function,

and isometric Gaussian probability were adopted. In Shared

Model Space Learning [7], [9], linear projection, identity

function, and inner product similarity were used, and the

similar idea was also adopted by [20] where the deep CNN

model was used as the image projection function. In Seman-

tic Similarity Embedding [21], the class-dependent nonlinear

projections, sparse reconstruction based projection, and inner

project similarity were used. In Synthesized Classifiers [2],

its complicated formulation could be also simplified as the

combination of a linear projection by virtual classifiers, an

exponential transformation with phantom class embedding

vector for ac, and inner product similarity. These approaches

may have different specific formulations in the literatures, but

they can be summarized into this same general objective.

On the other hand, the class-similarity based ZSL approach-

es can be summarized by the following general formulation:

c(xt) = argmaxc∈Ctprob(c|f s(xt),G) (2)

where prob() is the conditional probability on a target class, f s

is a multi-class classifier for the source classes which outputs

the probability distribution of a test sample on the source

classes, and G is the class similarity among all source and

target classes. Generally, the class-similarity based approaches

also adopt a two-step strategy in the test stage. Firstly, the

probability distribution on source classes is produced by f s.
Secondly, the probability is transferred/propagated to the target

classes based on the class similarity G. By choosing different

ways to build the multi-class classifier and compute the con-

ditional probability, several approaches have been developed.

In Indirect Attribute Prediction [3], a multi-class probability

classifier and a linear transformation were adopted. In Convex

Combination [14], a convolutional neural network classifier

and a linear transformation were utilized. In Semantic Mani-

fold Distance [13], the multi-class logistic regression classifier

was used for f s and absorbing Markov chain process was

exploited to propagate the probability to the target classes.



4

Fig. 3: Selected highly transferable images for car and dog.

We use them with pseudo labels to train a car-dog classifier.

In addition, some extra information from target samples is

considered by some transductive approaches [8], [9], [10],

[22]. In Propagated Semantic Transfer [22], the local man-

ifold structure of target samples was utilized to constrain

the predictions on target samples. In Transductive Multi-view

Embedding [8], the projection domain shift problem was dis-

cussed and the unlabeled target samples were incorporated to

learn domain consistent projection. In Unsupervised Domain

Adaptation [10], a regularized sparse coding framework was

proposed to overcome the projection domain shift problem.

Although more information is available, these approaches still

follow the two-step strategy summarized in Eq. (1) or Eq. (2).

III. THE PROPOSED FRAMEWORK

A. Observation

Transferring knowledge across classes is the key issue to

ZSL. Different from the existing approaches that transfer

knowledge in the embedding space or the class similarity

graph, this paper considers the sample transfer for ZSL.

Specifically, we take advantage of the source samples to

capture the characteristics of target classes in the original

feature space. In fact, it is believed that such a sample-

transfer scheme is very logical because human being often

uses one category to deduce another one as long as they

share the same characteristics. Here we take CIFAR10 [23]

dataset which contains 10 classes to explain this observation.

Suppose we aim to construct a dog-car classifier, but we

have only the labeled samples from the other 8 classes with

no labeled samples for these two classes available. By the

proposed sample transfer method introduced later, we select

500 samples with high transferability from 8 source classes

for both target classes and 20 of them are shown in Fig. 3

(most are from “truck” and “cat”). We can observe that the

selected samples can well describe the characteristics of target

classes. In particular, we assign pseudo labels “car” and “dog”

to the 1, 000 selected samples respectively, and on top of it, we

train a linear SVM dog-car classifier. Empirically, we found

out that the classifier is able to achieve 92.80% recognition

accuracy in the dog-car test set. Another example is shown in

Fig. 4, where we use t-SNE [24] to visualize the relationship

of some samples. Now suppose we aim to construct a dog-

truck classifier. In Fig. 4(a), we can see the samples from

“cat” and “car” are helpful to capture the characteristics of

“dog” and “truck”, just like in Fig. 3. In Fig. 4(b), we can

see that some (not all) samples from “deer” and “plane” can
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Fig. 4: t-SNE visualization of some samples.

also contribute to describe the target classes. Empirically, we

select some samples with high transferability from “deer” and

“plane” and assign pseudo labels from them to train a SVM

classifier. The obtained classifier yields 91.1% accuracy for

dog-truck classification. From the observations, we can see

the sample-based transfer is indeed an effective way for ZSL.

B. Sample Transfer

Now we are going to introduce how to select samples for

transfer for each target class. Because there is no labeled

samples for target classes, we still need the embedding space

or class similarity to help transfer knowledge. However, they

are only used for offline training and classifying a test sample

does not involve any intermediate transformations, which is a

clear difference with the existing works where the intermediate

transformation is compulsory for both training and test stages.

To select suitable samples, it is necessary to define how well

a sample can capture the characteristics of a target class, i.e.,

its transferability. The probability of a sample belonging to a

class can be a good measure of the transferability [3], [5]. For

example, a cat image is more likely than a dolphin image to be

classified as a dog, and thus it is more reasonable to transfer

a cat image to the dog class. Based on this idea, we utilize

the auxiliary information for helping compute the probability.

Embedding space. Given the embedding space, each class

(both source and target) is represented as an embedding vector

in the space where we measure the probability. Therefore, the

embedding functions are learned from the training samples by:

(ϕ, ψ) = argmin(ϕ,ψ)

ns
∑

i=1

L(ϕ(xsi ), ψ(ac(xs
i
)))

+

nt
∑

j=1

αjL(ϕ(x
t
j), ψ(ac̃(xt

j
)))

(3)

where L(·, ·) is a loss between two vectors, like Euclidean

distance, c̃(xtj) is the estimated label for a target sample

and αj is the weight for the target sample. In the induc-

tive setting, the second term is ignored because there is

no target samples for training. We will discuss the details

about the second term in the transductive setting later. As

introduced in Section II, it is possible to choose several

settings for ϕ, ψ and L. Because they are only for helping

select samples instead of classifying and this is not the focus

of this paper, we simply use a linear projection for ϕ, an

identity function for ψ and the squared Euclidean distance
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for L. Then denote X = [xs1; ...;x
s
ns
;α1x

t
1; ...;αnt

xtnt
], A =

[ac(xs
1
); ...; ac(xs

ns
);α1ac̃(xt

1
); ...;αnt

ac̃(xt
nt

)], and ϕ(x) = xP,

where P ∈ R
d×q is a linear projection matrix for ϕ. The

solution to the learning problem in Eq. (3) is given as follows

P = (X′X+ ǫId)
−1X′A (4)

where ǫ is a small positive value (say, 10−4) to avoid numeric

problems. Then based on the linear sample projection matrix

P, we adopt the isometric Gaussian probability [5] to compute

the transferability of a training sample xi to a target class ctj :

pji = N (xiP|act
j
, σ2I) (5)

Class similarity. When the class similarity is given, we

first learn a one-vs-all base classifier for each class, denoted

as f c where c ∈ Cs in inductive setting and c ∈ Cs ∪ Ct for

transductive setting. In this paper, we choose the linear SVM

for source classes which is trained with labeled samples and

robust SVM introduced later for target classes which is trained

with pseudo labeled samples. Then given a training sample xi,

each classifier produces an output oci for it, and the probability

distribution on all classes can be computed by soft-max [1]:

p̃ci = eo
c
i/

∑

c′
eo

c′

i (6)

Then with the class similarity graph, we can easily transform

the initial distribution into the final distribution on target

classes. In this paper, we adopt a simple linear transformation:

pji =
1

Z

∑

c
p̃cigjc (7)

where Z is a normalization factor to ensure that
∑

j p
j
i = 1,

and gjc is the similarity between class c and target class ctj .
Sample selection and transfer. Based on Eq. (5) or Eq.

(7), the probability that a training sample belongs to a target

class, i.e., the transferability, can be computed. A larger

transferability indicates that training sample xi can better

capture the characteristics of target class c and we should

transfer this sample to c. Therefore, it is reasonable that we

employ the transferability as the measurement to select the

samples for each target class. To be efficient, we perform here

class-wise selection and transfer, in which we select samples

for each target class one by one. In principle, it is desirable that

the selected and transferred samples have high transferability,

which can be translated into the following objective function:

(r1, ..., rn) = argmaxri

n
∑

i=1

ri × p
c
i +R(r)

s.t.

n
∑

i=1

ri = ρ > 0, ri ≥ 0

(8)

where ri is the ranking score for training sample xi. The

samples with higher ranking scores are transferred to the target

class. The scale constraint parameter ρ is imposed to avoid

arbitrary scaling on ri. R(·) denotes the regularization term

on the ranking scores which reflects the diversity in this paper.

Here we formulate the objective function to be general by

not specifying the meaning of n such that it can be applied

to different settings. Specifically, we can set n = ns in the

inductive setting. In the transductive setting, we have two

choices. The first is to set n = ns + nt, i.e., we put labeled

source samples and unlabeled target samples together for

sample selection. The second one is more sophisticated, which

adopts a disjoint selection procedure consisting of three steps.

In the first step, we set n = ns intending to select samples only

from the labeled source samples. Next, we enforce n = nt in

order to choose samples from the unlabeled target samples.

Eventually, we mix them together to form the final training

set. Empirically, we find that the second strategy works better.

Without a proper regularization, solving Eq. (8) will simply

assign large ranking scores to samples with high transferabil-

ity. However, this will give rise to the redundant samples in

the target class, which is not expected. For example, if two

samples are similar to each other, it is likely that they have sim-

ilar transferability. Hence, if one’s transferability is high, the

other’s will be high as well. Although they can both capture the

characteristics of the target class, they cannot provide enough

diversity such that they fail to comprehensively describe the

target class which may lead to an ineffective classifier [1].

To address this issue, we propose to incorporate diversity

as the regularization term. Specifically, we first define a heat

kernel matrix [25] to measure the similarity between samples

as Kij = exp(−‖xi − xj‖2/σ2) where σ is set to the mean

Euclidean distance between feature vectors in the training set.

Note that our classifier training and test are performed directly

in the original feature space, we expect the selected samples

to be diverse in the original feature space. To that end, the

kernel matrix is defined in the original feature space, but not

in the intermediate space. With the similarity kernel matrix, it

is straightforward to define the diversity regularization term:

R(r) = −
1

2

n
∑

i,j=1

Kijrirj (9)

Obviously, if two training samples xi and xj are similar, i.e.,

Kij is large, assigning large ranking scores to ri and rj simul-

taneously will result in large loss. By targeting to minimize

the loss, the redundance can be controlled and the selected

samples can provide sufficient diversity. After incorporating

the diversity regularization, the objective function becomes:

r = argmin
r

β

2
rKr′ − rp′, s.t. r1′

n = ρ, ri ≥ 0, (10)

where p = [pc1, ..., p
c
n] is the vector for target class c, and β is

the balance parameter between the diversity (the first term) and

the transferability (the second term). By optimizing Eq. (10),

we obtain the ranking scores of all training samples for target

class c and the top m samples are selected and transferred.

Optimization algorithm. The objective function in Eq. (10)

is a standard quadratic programming (QP) problem. There are

some ready-made packages to solve this problem, such as the

quadprog function in MATLAB. However, we notice that the

time complexity of a typical QP solver is usually high which

reaches O(n3). To make the optimization faster, in this paper,

we adopt a more efficient algorithm to solve Eq. (10) based

on the augmented Lagrange multiplier (ALM) framework [15],

[26]. Specifically, we first rewrite the constrained optimization
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Algorithm 1 Optimization algorithm for Eq. (10)

Input: The transferability vector of training samples p;

Sample-sample similarity matrix K;

Output: Ranking score ri for each sample;

1: Initialize: τ > 1, µ > 0, ri = pi/
∑n
i=1 pi, u = r, η1 =

0n, and η2 = 0;

2: repeat

3: Update A = βK+ µIn + µ1′1;

4: Update b = p+ µρ1n + µu− η1 − η21n;

5: Update r by solving linear system rA = b;

6: Update u by Eq. (14);

7: Update η1, η2 and µ by Eq. (15);

8: until Convergence;

9: Return ri;

problem in Eq. (10) into the ALM framework as an uncon-

strained problem by incorporating the penalty terms and the

Lagrange multiplier terms for the constraints as below:

L(r,u, µ, η1, η2) =
β

2
rKr′ − rp′ +

µ

2
‖r1′

n − ρ‖
2

+
µ

2
‖r− u‖2 + (r− u)η′1 + (r1′

n − ρ)η2, s.t.ui ≥ 0
(11)

where µ is a scalar, η1 and η2 are the Lagrange coefficients

for the corresponding constraints, and u is an auxiliary vector.

Based on the theory of ALM framework, to find the solution to

Eq. (10), we just need to update the variables in L iteratively

according to some rules until the convergence is achieved. The

final r is the global optimum to Eq. (10). Please refer to [15]

for the proof. In particular, the updating rules are as below.

Update r. When the other variables are fixed, it is straight-

forward to show the following equivalence with respect to r:

min
r

L ⇔ min
1

2
rAr′ − rb′ (12)

where A = βK + µIn + µ1′1 and b = p + µρ1n + µu −
η1 − η21n. By setting the derivative of the function with

respect to r to 0, the solution to the unconstrained problem

is given by solving a linear system rA = b. Apparently, A

is a positive defined matrix and thus the linear system has a

unique solution. To efficiently solve it, we adopt the algorithm

proposed by [27] which gives a nearly linear time complexity.

Update u. By fixing the other variables, the Lagrange

function L with respect to the auxiliary vector u is reduced to

min
ui≥0
L ⇔ min

ui≥0

µ

2
‖r− u‖2 + (r− u)η′1 (13)

and the solution to the nonnegativity-constrained problem is

ui = max(0, ri + η1i/µ) (14)

Update η1, η2 and µ. Following the pipeline of ALM

framework, η1, η2 and µ are updated respectively as follows:

η1 ← η1 + µ(r− u), η2 ← η2 + µ(r1′
n − ρ), µ← τµ (15)

where τ > 1 is a parameter. The optimization algorithm is

summarized in Algorithm 1. After applying the above steps,

we can obtain the ranking scores for training samples and

then we select some training samples with top ranking scores

and assign target class ctj for them as the pseudo label. We can

perform the sample selection and transfer for each target class.

Finally, we obtain a set of samples assigned by pseudo labels

for target classes, which can be used for training classifiers.

C. Robust SVM

Until now, we have successfully transferred some training

samples attached with the pseudo labels for each target class.

Next, we train the classifiers directly in the original feature

space, given the transferred samples and pseudo labels. It

can be seen that the classification in the test is achieved in

one single step, omitting the intermediate space. Theoretically,

we can train any supervised classifiers by using the pseudo

labels, such as Logistic Regression and kNN classifier. In this

paper, we adopt the SVM classifier as the classification model

considering its good generalization ability [28]. However, we

need to deal with the label noise caused by the fact that

the pseudo labels are not the true labels. To achieve better

performance, we modify the standard SVM formulation in our

scenario so as to enhance its robustness against the label noise.

Formally, suppose we have totally m transferred samples

{x1, ...,xm} from training set and each sample has a pseudo

label from Ct. To handle the multi-class classification, we

train kt one-vs-all SVM classifiers [29] where each classifier

f c treats class c as positive and the other target classes as

negative. With the kt classifiers, the final decision is given by

c(xt) = argmaxc∈Ctf c(xt) (16)

To train the classifier f c(c ∈ Ct), we first construct the

one-vs-all pseudo label vector lc ∈ {−1, 1}m for target class

c where lci = 1 if the sample xi is assigned by the pseudo label

c , or lci = −1 otherwise. Based on these data, we consider

the following dual formulation of the binary SVM learning:

min
αc

1

2

m
∑

i,j=1

αciα
c
j l
c
i l
c
jK(xi,xj)−

m
∑

i=1

αci

s.t. 0 ≤ αci ≤ C,
m
∑

i=1

αci l
c
i = 0,

(17)

where K(·, ·) is the kernel function for SVM and the classifier

is represented as f c(x) =
∑

i α
c
i l
c
iK(xi,x). Because of the

label noise, we need to consider the situation that a sample

with lci = 1 should in fact be labeled as −1, i.e., the label

flip [30]. Specifically, we consider that the pseudo label has

a probability to be the flipped version of the true label l̃ci =
lci (1 − 2ǫi) where ǫi is a binary variable with p(ǫi = 1) = θi
(flipped) and p(ǫi = 0) = 1 − θi (not flipped). Furthermore,

given a positive sample with large transferability computed

from Eq. (5) or Eq. (7), it is reasonable to assume that its

pseudo label is reliable, i.e., θi is small. On the other hand,

for a sample with lci = −1 (negative sample for c), its θi
should be small too because the highly transferable samples

only makes up a small proportion of the large training set such

that its true label is unlikely to be 1. Based on these rules, we

define the value of θi for each transferred samples as follows:

θi =

{

(1 + eδp
c
i )−1, if lci = 1

0, if lci = −1
(18)
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where δ is a scale parameter and we set it to 5 in this paper.

Then, to take the noise (label flip probability) into account,

we replace lci in Eq. (17) with lci (1 − 2ǫi). Now we denote

Mij = (1− 2ǫi)(1− 2ǫj), and the expected value of Mij is:

Eǫ[Mij ] =

{

1− 2θi − 2θj + 4θiθj , if i 6= j

1, if i = j
(19)

By replacing lci l
c
j with Eǫ[l

c
i l
c
j(1−2ǫi)(1−2ǫj)] = lci l

c
jEǫ[Mij ]

in Eq. (17), we obtain the objective function of robust SVM:

min
αc

1

2

m
∑

i,j=1

αciα
c
j l
c
i l
c
jK̃ǫ(xi,xj)−

m
∑

i=1

αci

s.t. 0 ≤ αci ≤ C,
m
∑

i=1

αci l
c
i = 0,

(20)

where K̃ǫ(xi,xj) = Eǫ[Mij ]K(xi,xj). This formulation is

intrinsically identical to the standard SVM dual formulation

with a kernel matrix K̃ǫ, which can be efficiently solved by

the existing tools, like LIBSVM [31]. In fact, we can observe

that the label noise only influences the similarity between

training samples in the dual formulation, i.e., i 6= j. Hence, our

formulation actually aims to decrease the similarity between

samples to alleviate the influence of the label noise such that

an unreliable positive sample gains less weight during training.

For example, if a sample has low transferability such that its

pseudo label is not confidential at all. A large θi is assigned

to it such that its kernel similarity K̃ǫ(xi,xj) is almost 0. In

this case, it has little influence on the objective function.

D. Extensions and Summary

In the above sections, we introduced how to transfer training

samples to each target class and train robust SVM classifiers.

Next we will discuss how to apply it to different settings.

Embedding space and class similarity. Under different

situations, the kinds of relationship among classes can be

different. For our framework, the auxiliary relationship is only

used in training stage to help compute the transferability of

each training sample to each target class and we do not need it

at all in the test stage. In Eq. (5) and Eq. (7), how to compute

the transferability based on the embedding space and the class

similarity is given respectively and the sample selection and

transfer step in Eq. (10) only requires the transferability of

training samples. Therefore, it is straightforward to apply the

proposed framework to embedding space or class similarity.

Inductive learning and transductive learning. In the in-

ductive setting where the unlabeled target samples are unavail-

able, we can only utilize the source samples for training. For

this setting, we just need to sequentially perform transferability

computing by Eq. (5) or Eq. (7), sample selection and transfer

by Eq. (10), and robust SVM training by Eq. (20). Finally, we

obtain the one-step classification model for the target classes.

On the other hand, we can make use of the unlabeled

target samples in the transductive setting. Although the target

samples are all unlabeled, they can also provide important

information about the target classes, for example, the influence

of domain shift problem [8], [9], [10] can be significantly

Algorithm 2 Zero-shot learning with transferred samples

Input: Labeled source samples xsi ;

Unlabeled target samples xtj ; /*transductive*/

Class embedding ac or class similarity G;

Output: Classifiers for target classes;

1: while not convergent /*in the transductive setting, we use

the iterative procedure to refine the model*/ do

2: Learning the projection or base classifiers; /*estimated

labels are used in transductive setting*/

3: for c ∈ Ct do

4: Compute the transferability for each sample to each

target class by Eq. (5) or Eq. (7);

5: Solve Eq. (10) with source samples;

6: Solve Eq. (10) with target samples; /*transductive*/

7: Assign pseudo label c to selected samples;

8: end for

9: Train Robust SVM by transferred samples and pseudo

labels by Eq. (20);

10: end while

11: Return robust SVM for each target class;

alleviated by using the information of unlabeled samples. In

this paper, we propose an iterative refinement procedure to

improve the learning performance. Specifically, the estimated

labels of the target samples are produced by the current

model, and then we use the estimated labels to help train

the next model. For example, in Eq. (3), we can use the

estimated labels of target samples to learn a better projection

and we use the transferability of xtj as the weight αj . With a

better projection, the whole procedure is re-executed and we

normally expect to generate more effective classifiers for target

classes which refine the estimated labels for target samples.

For the class similarity case, we can also use the current

robust SVM classifiers as the base classifier f c. Here is a

“cold-start” problem for the iterative procedure because the

estimated labels are not available at first. To address this issue,

we can first ignore the target samples and construct an initial

model under the inductive setting and then use the initial

model to generate the initial estimated samples. In the coming

experiment, we will demonstrate that the iterative refinement

can always lead to better results. In addition, considering the

source samples and target samples have different distributions,

we adopt the disjoint selection strategy in the transductive

setting. Specifically, for each target class, we first use only

source samples to solve Eq. (10), i.e., n = ns, to transfer ms

source samples, and then use only target samples to solve Eq.

(10), i.e., n = nt, to transfer mt target samples. Therefore,

there are ms +mt samples transferred to each target class.

Summary. We summarize the whole procedure of the

proposed framework in Algorithm 2. We can notice that the

framework is so flexible that it can be applied to different

settings. In line 2, we utilize the auxiliary relationship between

source and target classes for knowledge transfer. In line 4 to

7, we transfer training samples for each target class. In line 9,

the target classes’ classifier is trained using the transferred

samples and pseudo labels. In the transductive setting, an

iterative refinement (line 1 to 10) is adopted. Based on the
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learned classifier, the classification can be performed directly

in the original feature space and the auxiliary relationship is no

longer required in the test stage. Thus, with less information

loss in the test stage, we can expect better ZSL performance.

E. Complexity Analysis

For Algorithm 1, we adopt the ALM to solve the quadratic

programming problem in Eq. 10. Specifically, suppose there

are n training samples to solve Eq. (12), we adopt the algorith-

m from [27] which has a nearly linear complexity. In updating

operations in Eq. (14) and Eq. (15) is linear to n. Therefore,

the complexity of Algorithm 1 is approximatelyO(Tn) where

T is the number of iterations to convergence. Typically, the

algorithm can converge very fast. In Algorithm 2, for each

target class, we need to perform Algorithm 1 to select pseudo

labeled samples, which leads to O(nkt) complexity. The

complexity of training robust SVM is approximate to training

standard SVM by using LIBSVM. In summary, the complexity

of the approach is linear to the number of training sample n,

the number of target class ks, and the number of iterations in

the transductive setting where is usually no more than 10.

IV. EXPERIMENT

A. Experiment Settings

Data preparation. In our experiment, we adopt four widely

used benchmark datasets for ZSL. The first dataset is CI-

FAR10 [23] which contains 10 categories like “dog” and

“truck” with 6, 000 images for each category. Following the

setting in [5], [21], we use 8 categories with 48, 000 images

as the source classes and the other 2 categories with 12, 000
images as the target classes. Therefore, there are C2

10 = 45
different source-target splits. The second dataset is Animal-

with-Attributes (AwA) [3]. This dataset has 50 animal cate-

gories and 30, 475 images. It has a standard source-target split

suggested by [3] where 40 categories with 24, 295 images

are source classes and the other 10 categories with 6, 180
images are target classes. The third dataset is aPascal-aYahoo

(aPY) [4] with two subsets. aPascal has 20 objects designed

for PASCAL VOC2008 challenge [32], such as “people” and

“dog”. It contains in total 12, 695 images. aYahoo dataset was

collected from Yahoo image search. It has 12 classes which

are similar but different from the ones in aPascal, such as

“centaur” and “wolf”. It contains 2, 644 images. Following the

common setting, we regard aPascal as the source classes and

aYahoo as the target classes. The last dataset is Caltech-UCSD

Birds-200-2011 dataset (CUB) [33]. This dataset contains 200
kinds of birds and 11, 788 images. Following [2], we randomly

split the classes into 4 parts where each part has 50 classes.

We utilize one part as the target classes and the other three as

the source classes. We report the average result over 4 parts.

The recent years have witnessed the success of deep con-

volutional neural network (CNN) features on computer vision

and related fields, such as zero-shot learning [2], [8], [10],

[21], hashing [34], [35], detection [36], image annotation [37].

Therefore, we also adopt CNN features in our experiment.

Specifically, we use the Caffe [38] tool with the pre-trained

VGG-19 model [39] and we employ the 4, 096-dimensional

output of the last fc layer as the feature vector for each image.

To construct the class embedding for CIFAR10 dataset,

following [5] we adopt the 50-dimensional word representation

learned by [40]. For AwA dataset, we utilize the provided

binary attribute representation for each class [3] which is a

85-dimensional vector. For aPY and CUB, the attributes are

annotated to each image. Following previous works [8], [21],

we take the means of attribute vectors from the same class to

generate the class embedding. To construct the class similarity

graph among classes, analogous to [13], we adopt the squared

cosine similarity between the class embeddings1 mentioned

above for gij and we further normalize gi∗ to control the scale.

Baselines and evaluation metric. Because our framework

can be applied to several settings, we select many related

ZSL approaches as baselines. They cover both transductive

and inductive settings, and utilize either class embedding

or class similarity as auxiliary information. To evaluate the

performance, following the standard setting, we adopt the

multi-way classification accuracy on target classes as metric.

Implementation detail. We use the following settings to

implement our framework under different scenarios. When

training (robust) SVM classifiers used as the base classifiers

for class similarity and as the target class classifiers, we need

to choose the parameter C. We adopt 5-fold sample-wise cross

validation using the (pseudo) labeled samples, and C is chosen

from {0.01, 0.05, 0.1, ..., 5, 10}. For the robust SVM, we adopt

linear kernel, i.e., K(xi,xj) = xix
′
j , because it is the most

easy to control. There is an important parameter β in Eq.

(10) which balances the weight between transferability and

diversity. To determine this parameter, we adopt the class-

wise cross validation [2], [9], [21]. Analogous to the sample-

wise one whose aim is to guarantee the model learned with

labeled samples can generalize well for new samples, class-

wise cross validation tries to construct a model using labeled

source classes that can generalize well for new target classes.

Specifically, we split the source classes into k folds in which

one fold is regarded as the validation set and the others as the

training set. Then we can simulate the ZSL setting by treating

the samples in validation set as unlabeled. Based on the

class-wise cross validation, the optimal value for parameters

can be determined and then we train the final model using

all training data. In our experiment, we use 4-fold class-

wise cross validation and the parameter β is chosen from

{10−3, ..., 103}. When transferring samples from source sam-

ples, we set ms = 1000, 500, 200, 50 for CIFAR10, AwA, aPY,

and CUB respectively, i.e., for each target class, ms samples

are transferred for it and assigned by the corresponding pseudo

labels. On the other hand, when transferring from unlabeled

target samples (by the disjoint selection in the transductive

setting), we set mt = 500, 200, 50, 10 respectively. The effect

of ms and mt will be discussed later. We denote the inductive

version as STZSL-I, and the transductive version as STZSL-T.

1Because the similarity graph is not available, we can only use the class
embedding to help construct it. When the class similarity is adopted as the
auxiliary relationship, all approaches cannot get access to the class embedding.
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TABLE I: The zero-shot classification accuracy(%) on four benchmark datasets. The approaches listed in this table take the

class embedding as the auxiliary information. The symbol ‡ indicates that the result is produced under the transductive setting.

CIFAR10 Animal with Attributes aPascal-aYahoo Caltech-UCSD-Birds

Farhadi et al. 2009 [4] 32.5
Socher et al. 2013 [5] 72.8

Fu et al. 2014 [8] 77.8‡ 45.2‡

Jayaraman et al. 2014 [41] 43.01± 0.07 26.02± 0.05
Akata et al. 2015 [42] 66.7 50.1

Kodirov et al. 2015 [10] 75.6‡ 26.5‡ 40.6‡

Li et al. 2015 [43] 56.88± 1.74‡ 27.02± 1.25‡

Li et al. 2015 [44] 52.06± 1.52‡ 25.98± 1.19‡

RomeraParedes et al. 2015 [7] 81.22± 1.04 75.32± 2.28 24.22± 2.89 39.04± 0.57
Zhang et al. 2015 [21] 88.30 76.33± 0.83 46.23± 0.53 30.41± 0.20

Al-Halah et al. 2016 [45] 67.5 37.0
Changpinyo et al. 2016 [2] 72.9 54.5

Guo et al. 2016 [9] 86.30± 0.77‡ 78.47± 1.06‡ 39.03± 0.77‡ 43.10± 0.32‡

Xian et al. 2016 [46] 76.1 47.4
Zhang et al. 2016 [47] 79.12± 0.53 50.23± 2.97 42.11± 0.55

STZSL-I 89.72± 0.56 79.73± 0.68 51.67± 0.32 55.36± 0.30
STZSL-T 90.99± 0.27‡ 83.71± 0.82‡ 54.37± 0.44‡ 58.70± 0.29‡

TABLE II: The zero-shot classification accuracy (%) on four benchmark datasets. The approaches listed in this table take the

class similarity as the auxiliary information. The symbol ‡ indicates that the result is produced under the transductive setting.

CIFAR10 Animal with Attributes aPascal-aYahoo Caltech-UCSD-Birds

Fu et al. 2013 [48] 55.3± 0.41
Norouzi et al. 2013 [14] 45.2± 0.73

Deng et al. 2014 [49] 44.2
Lampert et al. 2014 [3] 70.08± 1.02 53.2 22.10± 0, 64 32.50± 0.87

Fu et al. 2015 [13] 73.89± 1.42 56.0 23.02± 0.42 34.87± 0.44

STZSL-I 80.07± 1.09 62.21± 0.72 31.02± 0.41 38.78± 0.10
STZSL-T 84.39± 0.51‡ 67.10± 0.31‡ 35.57± 0.45‡ 41.19± 0.29‡

B. Experiment Results

Benchmark comparison. We firstly compare the proposed

framework to the state-of-the-arts on four benchmark datasets.

In Table I, we present the performance of approaches which

take the class embedding as the auxiliary information. In Table

II, we show the results of approaches which utilize the class

similarity for knowledge transfer. Furthermore, we compare

the proposed framework to both inductive approaches and

transductive approaches. We can observe that the proposed

framework performs better than, at least comparable to, the

state-of-the-art baselines in the corresponding settings, which

demonstrates the effectiveness of the proposed framework. In

addition, we have the following observations from the results.

Firstly, there are two important baselines [3], [5] we need

to mention since the way our framework computes the trans-

ferability is highly analogous to their classification methods.

However, our framework does not simply perform classifica-

tion in the intermediate space. Instead, it only utilizes the

intermediate space for sample transfer and trains classifiers

directly in the original feature space. The superiority of the

proposed framework to [3], [5] demonstrates that classifying

target samples in the intermediate space may suffer from poor

performance because of the information loss and that training

models in the original feature space can avoid this problem.

Secondly, we noticed that there are some approaches that

construct classification model in the original feature space,

like [7], [9], [43]. But in fact, their classifier is formulated as

f c(x) = xWa′c where ac is the class embedding for target

class c ∈ Ct and W is a parameter matrix learned from

training data. Obviously, this formulation is equivalent to the

two-step strategy where a test sample is firstly projected into

the class embedding space by W and then the classification

is done by measuring the inner product similarity between the

projected feature and target classes’ embeddings. Therefore,

they also follow the general framework in Eq. (1). Although

they achieve state-of-the-art performance among all baselines,

they still suffer from the problem of the two-step strategy such

that they still perform worse than the proposed framework.

Thirdly, among all baselines, [2] and [47] adopt the most

complicated projection functions which simultaneously project

the sample and class embedding into an intermediate space.

Because of their complicated projections, they show supe-
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Fig. 5: Effect of diversity regularization with class embedding as the auxiliary information.
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Fig. 6: Effect of diversity regularization with class similarity as the auxiliary information.

rior performance and are even comparable to the proposed

framework in some specific datasets, for example, [2] in CUB

and [47] in aPY. However, their overall performance is still

worse than the proposed framework. In addition, in TABLE

II, [13] adopts complicated semantic manifold distance for

similarity measure in the intermediate space, which achieves

best performance in the baselines. But the proposed framework

performs much better than it. Both results demonstrate again

the superiority of the proposed one-step framework to the two-

step strategy because it trains classifiers directly in the original

feature space such that it suffers from less information loss.

Fourthly, the average results in TABLE II is worse than in

TABLE I because the class similarity provides less information

than the class embedding although it is relatively easier to

obtain. This phenomenon is more significant for the baselines

since their classification highly relies on the class similarity

and intermediate space. On the contrary, the proposed frame-

work utilizes the class similarity only for sample transfer and

the classifiers are trained directly in the original space with the

samples. Therefore, the proposed framework performs much

better and is even comparable to the state-of-the-arts using

class embedding. It is noticed that STZSL in TABLE II is

worse than in TABLE I because the less information indeed

has influence on the sample transfer since some “bad” samples

are transferred. But the superior performance of the proposed

framework in both settings still validates its generalizability.

C. More Investigation

The effect of diversity regularization. The key of the

proposed framework is to transfer from source domain the

similar samples to target domain classes. To remove the re-

dundancy of transferred samples, we propose to incorporate a

diversity regularization term into Eq. (10). Now we investigate

the effect of the diversity regularization term. Specifically,

we run our approaches by setting β = 0 in Eq. (10) and

compare the results to the optimal value for β chosen by the

class-wise cross validation. The other parameters are set to

the optimal values. The comparisons on four datasets under

different settings are summarized in Fig. 5 and 6. In particular,

we have the following three observations based on the results.

Firstly, the performance when β = 0 drops with significance

in most cases, indicating that removing the diversity regu-

larization leads to worse transferred samples. In fact, based

on Eq. (5) or Eq. (7), it is straightforward to observe that

similar samples have similar transferability. Therefore, if one

sample is transferred because of its high transferability, its

neighbors will be transferred too because they are also highly

transferable. If so, the transferred samples can cover the target

class only from a few aspects, but not comprehensively from

most aspects, i.e., they are redundant, which may lead to

ineffective classifiers. Actually, this phenomenon is common

for human being. For example, if one is trained with images

from the back view of “tiger”, he/she may fail to recognize a

“tiger” from a front view image. By incorporating the diversity

regularization into Eq. (10), this problem is well addressed.

Secondly, the diversity regularization has different effects

on different datasets. Specifically, it has more influence on

CIFAR10 and AwA but less on aPY. This is caused by the

properties of datasets. In CIFAR10, there are a large number

of candidate samples and there only 2 target classes and

the variety of samples is relatively small. Therefore, without

diversity regularization, the transferred samples can be very

redundant. On the other hand, in aPY, the number of candidate

samples is small and the samples in this dataset are more
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Fig. 7: Effect of robust SVM with class embedding as the auxiliary information.
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Fig. 8: Effect of robust SVM with class similarity as the auxiliary information.

diverse compared to CIFAR10. Consequently, even without

diversity regularization, the transferred samples themselves

can provide enough diversity such that the regularization term

has less influence on it. However, in real-world applications,

especially the Web-based ones, the candidate set is quite large,

and thus the regularization is important for our framework.

Thirdly, even without the diversity regularization, the pro-

posed framework still yields state-of-the-art performance in

most cases. This phenomenon is another evidence to demon-

strate that the one-step recognition framework with transferred

samples is indeed better than the existing two-step approaches.

The effect of robust SVM. Because we assign the pseudo

labels to the transferred samples, it is necessary to consider

the noise in the pseudo labels considering the fact that they are

not true labels. In this paper we propose to adopt robust SVM

to take the noise into account. Now we investigate the effect

of the robust SVM on the proposed framework. Specifically,

we utilize the conventional linear SVM as the classifier, i.e.,

we set θi = 0 for all samples in Eq. (18), and compare it

against the one with robust SVM (R-SVM). We summarize

the comparisons under different settings in Fig. (7) and (8).

From the results, it can be observed that the robust SVM

indeed has significant contribution to the proposed framework.

In particular, adopting robust SVM increases the accuracy by

2.61% in average on 4 datasets under 2 settings and 2 auxiliary

information sources. Generally, the improvements caused by

robust SVM are more significant for inductive setting than

transductive setting. This is a reasonable phenomenon because

of the following reason. The robust SVM is to address the

noise in the pseudo labels caused by the fact that they are

not the true labels. In the target domain, the selected samples

come from the target classes, and they can better capture the

distribution of target classes. Therefore, their pseudo labels are

more reliable such that conventional SVM and robust SVM

have similar performance. On the other hand, the transferred

source samples do not exactly belong to the target classes.

Although the transferred ones may capture the characteristics

of target classes, they are more likely to be the noisy data

compared to the target samples, especially when the diversity

regularization is incorporated such that the algorithm is forced

to transfer some dissimilar samples. In fact, if we set a large

value for β in Eq. (10) (say, 105), the performance gap between

robust SVM and conventional SVM becomes much larger

because the robust SVM will assign a large value (close to 0.5)

to θi for unreliable samples based on Eq. (18) such that the

unreliable samples contribute little to the similarity between

samples because Eǫ[Mij ] is nearly 0, while the conventional

SVM still utilizes the highly noisy pseudo labels for training.

In addition, the performance gap between robust SVM and

conventional SVM is relatively smaller in CIFAR10 dataset

than the other datasets. The reason is analogous to our dis-

cussion mentioned before. Because the CIFAR10 dataset has

only 2 target classes and a lot of source samples as candidates,

the pseudo labels of transferred samples are more reliable

since it is more likely to select the source samples that can

well capture the characteristics of target classes. Therefore, the

label flip probability θi is small for most samples given their

high transferability pci based on the definition. In this case,

the robust SVM works in a similar way as the conventional

SVM because we have Eǫ[Mij ] ≈ 1 given small θi and

θj for robust SVM while Eǫ[Mij ] = 1 for conventional

SVM. On the other hand, the other three datasets have fewer

candidate source samples for transfer and thus there may

exist some unreliable transferred samples. If so, the effect

of robust SVM becomes more significant. However, even
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Fig. 9: Effect of ms on STZSL-I.
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Fig. 10: Effect of mt on STZSL-T.
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Fig. 11: Effect of iterative refinement on STZSL-T.

though the effect of robust SVM is small in CIFAR10, the

improvement over conventional SVM is still significant. In

particular, the average improvement is 1.36% in 4 different

settings. Overall speaking, the consistent improvements on 4
datasets and several settings given by robust SVM demonstrate

that it is indeed an important part for the proposed framework.

The effect of transferred samples. The key of the proposed

framework is to transfer samples for each target class. It is

necessary to study the effect of the number of the transferred

samples. Firstly, we investigate the effect of ms, i.e., the

number of samples transferred from source domain to each

target class. We adopt the inductive approach STZSL-I in the

following experiments. We plot the accuracy curves w.r.t. ms

on four datasets in Fig. 9. Obviously, we obtain bell-shaped

curves in all settings. Specifically, we have two observations

from both sides of the curves. On one hand, when ms is small,

increasing it can help improve the classification accuracy

on the target classes. This is quite reasonable because more

transferred samples can provide more knowledge for target

classes which is beneficial for training effective classifiers [50].

On the other hand, when ms is large, the performance drops

significantly when we keep increasing it. The fundamental

of the proposed framework is to transfer samples that can

well capture the characteristics of target classes. However,

the number of these samples is limited in a dataset so that

increasing it too much will force the algorithm to transfer

samples that have negative effect. Moreover, the diversity

regularization further makes the drop earlier because the good

samples are missed if its neighbors are transferred. Without

the diversity regularization, the top accuracy of the curves is

lower, as was discussed before. But the curves can remain

stably high accuracy with larger ms compared to the current

setting because similar/redundant samples can be transferred

simultaneously. However, it should be noticed that the curves

will also drop significantly at last like in Fig. 9 when ms

becomes too large since too many bad samples are transferred.

In the transductive setting, we also select and transfer

samples from unlabeled target domain, and the number of

pseudo labeled samples for each target class is denoted as mt.

By fixing ms to the optimal values mentioned before, we plot
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the accuracy w.r.t. mt on four datasets in Fig. 10. Analogous to

the results for ms, the curves are bell-shaped. One difference

is that the curves for mt have higher start points compared

to ms. This is because of the abundant knowledge transferred

from the source samples such that even a few transferred target

samples can generate good results. Surely, given reasonably

more target samples, the distribution of target classes can be

better captured, and thus better performance is achieved. In

addition, because we use the pseudo labels, increasing mt

dramatically can only bring in too many unreliable target

samples with noisy pseudo labels, which decreases the result.

The effect of iterative refinement. In the transductive

setting, we propose an iterative refinement method to progres-

sively fine-tune the model. Here we investigate the effect of

the iterative refinement. Specifically, we plot the accuracy on

the target classes w.r.t. the number of iterations (line 1 to 10 in

Algorithm 1). The performance curves are presented in Fig. 11.

The results clearly demonstrate the increasing accuracy with

more iterations, which validates that the iterative procedure

indeed refines the model. In each iteration, better estimated

labels can lead to better projection or base classifiers, which

in return refine the estimated labels. As we introduced above,

the estimated labels for unlabeled target samples are initialized

in the inductive way in the first iteration. One may notice

that the results in the first iteration from Fig. 11 are slightly

different from the ones we reported in TABLE I and II in some

cases. This is because we use class-wise cross validation to

choose model parameters and consequently the inductive and

transductive extensions may have different optimal parameters.

V. CONCLUSION

In this paper we address the zero-shot learning problem

which transfers knowledge from labeled source classes to

unlabeled target classes. Conventional ZSL approaches adopt

a two-step recognition strategy in the test stage including a

projection step and a similarity measure step in an interme-

diate space. Information loss is unavoidable because of the

intermediate transformation, which degrades the performance.

In this paper, we propose a novel one-step ZSL framework

which performs classification in the original feature space with

directly trained classifiers. To construct label information for

classifier training where target classes have no labeled samples

available, we propose a novel sample transfer strategy that

transfers samples based on their transferability and diversi-

ty from source classes to target classes and assign pseudo

labels for them to train classifiers. To address the noise of

pseudo labels, we adopt robust SVM classifier. We extend the

framework into inductive and transductive settings, and with

class embedding or class similarity as auxiliary information,

which is the first framework that can work in all these settings.

We carried out extensive experiments on four benchmarks for

ZSL, the results demonstrate the superiority of the proposed

framework to the state-of-the-art approaches in many settings.
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