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Abstract—For efficiently retrieving nearest neighbors from
large-scale multiview data, recently hashing methods are widely
investigated, which can substantially improve query speeds. In
this paper, we propose an effective probability-based semantics-
preserving hashing (SePH) method to tackle the problem
of cross-view retrieval. Considering the semantic consistency
between views, SePH generates one unified hash code for all
observed views of any instance. For training, SePH first trans-
forms the given semantic affinities of training data into a
probability distribution, and aims to approximate it with another
one in Hamming space, via minimizing their Kullback–Leibler
divergence. Specifically, the latter probability distribution is
derived from all pair-wise Hamming distances between to-be-
learnt hash codes of the training data. Then with learnt hash
codes, any kind of predictive models like linear ridge regression,
logistic regression, or kernel logistic regression, can be learnt
as hash functions in each view for projecting the correspond-
ing view-specific features into hash codes. As for out-of-sample
extension, given any unseen instance, the learnt hash functions
in its observed views can predict view-specific hash codes. Then
by deriving or estimating the corresponding output probabil-
ities with respect to the predicted view-specific hash codes, a
novel probabilistic approach is further proposed to utilize them
for determining a unified hash code. To evaluate the proposed
SePH, we conduct extensive experiments on diverse benchmark
datasets, and the experimental results demonstrate that SePH is
reasonable and effective.

Index Terms—Approximate nearest neighbor (ANN) retrieval,
cross-view retrieval, semantics-preserving hashing (SePH).

I. INTRODUCTION

FOR numerous algorithms in the fields of cybernetics,
computer vision and machine learning, etc., retrieving
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nearest neighbors for an instance plays a fundamental role,
as also revealed in [1] and [2]. However, with the explosion
of data in recent years, efficient nearest neighbor retrieval
from large-scale and rapidly-increasing databases becomes
quite challenging. For tackling that, various tree-based index-
ing methods [3]–[6] and hashing methods [1], [2], [7]–[39]
are proposed to perform exact or approximate nearest neigh-
bor (ANN) retrieval with much higher speeds. As tree-based
indexing methods can suffer from the “curse of dimension-
ality” for high-dimensional data even after feature encod-
ing [40], recently hashing methods are becoming preferred
and widely researched for handling such data. Generally, for
hashing methods, by generating a k-bit binary (i.e., 0 or 1)
hash code for each instance, we can store the data compactly
in hardware bits. Meanwhile, to perform ANN retrieval, the
Hamming distances between the query hash code and those in
the retrieval set can be efficiently calculated using fast bit-wise
XOR and bit-count operations1 with a sublinear time complex-
ity. And with all Hamming distances calculated, generally only
the small ones are kept and then ranked in an ascending order
to select instances with smallest Hamming distances as the
ANNs. Therefore, if the binary hash codes can well preserve
the affinities between instances, hashing methods can perform
ANN retrieval with much lower storage costs and higher query
speeds [17], while the quality loss of the retrieved neighbors
would be acceptable.

Generally speaking, we can roughly classify existing hash-
ing methods into single-view hashing [1], [2], [7]–[19] and
multiview hashing [20]–[39]. The former focuses on data with
a single view, while the latter focuses on that with multiple
views, like an object with pictures from different cameras or
a news report with texts and images. Our work in this paper
is about cross-view retrieval for multiview data. Specifically,
cross-view retrieval can utilize just one view of a query to
retrieve its nearest neighbors in other different views, like
using a query picture from one camera to retrieve relevant
ones from other cameras, or using a textual query to retrieve
semantically relevant images. Since cross-view retrieval can
be utilized in many applications, such as textual-visual image
search [41] and multiview 3-D object retrieval [42], it is
becoming more and more popular, as also revealed in [35].

In recent years, researchers have proposed many effec-
tive hashing methods for cross-view retrieval, ranging from
unsupervised ones [20]–[25] to supervised ones [26]–[39].

1Both bit-wise XOR and bit-count operations are generally supported or
implemented by hardware.
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Fig. 1. Illustration of the differences between previous work (left) and the
proposed SePH (right). Here, oi(i = 1, 2, . . . , 6) are to-be-learnt hash codes,
blue solid edges between them denote their pairwise distances (similarities),
and red dotted lines between edges denote the correlations between distances
(similarities). Note that for clarity, some edges/lines are omitted. (a) Previous
work. (b) Proposed SePH.

The former ones generally utilize only the features of training
data in different views to exploit intraview and interview cor-
relations for learning hash functions, which project features
into binary hash codes. Meanwhile, the latter ones can further
exploit other available supervised information like semantic
affinities of training data, to better learn the projections and
yield superior performance. Actually, for supervised ones, well
preserving the semantic affinities between instances is the key
to reducing the quality loss of retrieved nearest neighbors,
which is also the focus of our research.

In this paper, we propose a probability-based semantics-
preserving hashing method for cross-view retrieval, termed
SePH. The proposed SePH belongs to supervised hash-
ing. Moreover, considering the semantic consistency between
observed views, SePH generates one unified hash code for
all observed views of any instance, like [23] and [24].
For training, SePH first transforms the given semantic
affinities of training instances into a probability distribu-
tion P and aims to approximate it in Hamming space.
Specifically, SePH transforms all pairwise Hamming distances
between to-be-learnt hash codes of the training instances
into another probability distribution Q, and then minimizes
its Kullback–Leibler divergence (KL-divergence) from P . In
previous work [27], [34], [35], the supervised information,
i.e., the semantic affinities of training instances, is generally
utilized to independently weight each pairwise distance (sim-
ilarity) between hash codes. Differently, SePH standardizes
all pairwise Hamming distances into a global probability dis-
tribution by transforming each into a probability and thus
makes them dependent on each others. In that way, apart
from weighting pair-wise distances (similarities) between hash
codes as previous work, SePH can further incorporate the
correlations between distances (similarities) to force the to-
be-learnt hash codes of training instances to better preserve
the semantic affinities, as illustrated in Fig. 1, which shows
the differences between previous work and SePH in a vivid
way. After learning the hash codes of training instances, SePH
further learns hash functions independently in each view for
projecting the corresponding features into binary hash codes,
which can be open for any kind of effective predictive mod-
els. Specifically, in this paper, we respectively utilize linear
ridge regression, logistic regression, and kernel logistic regres-
sion as hash functions. As for out-of-sample extension, given

an unseen instance, the learnt hash functions in each of its
observed views can predict view-specific hash codes. Then by
deriving or estimating the corresponding output probabilities
with respect to the predicted view-specific hash codes, a novel
probabilistic approach is further proposed to utilize them for
determining a unified hash code. Similar to [8], here SePH
employs a two-step hashing framework. The reason why SePH
adopts a two-step framework is twofold. First and most impor-
tant, utilizing a two-step framework can make SePH more
flexible and enable it to use any kind of effective predictive
models as hash functions. Second, utilizing a two-step frame-
work can simplify the optimization process, since directly
learning hash functions in a one-step manner can probably
make the objective function quite complex and even unable to
be optimized. The reasonableness and effectiveness of SePH is
well demonstrated by comprehensive experiments on diverse
benchmark datasets.

We summarize the contributions of this paper as follows.
1) We propose a probability-based SePH method for cross-

view retrieval, which approximates a probability distri-
bution derived from given semantic affinities of training
data with another one derived from the to-be-learnt
hash codes in Hamming space via minimizing their
KL-divergence.

2) We propose a novel probabilistic approach to deter-
mine a unified hash code for any given unseen instance,
utilizing its predicted view-specific hash codes from dif-
ferent observed views and the corresponding derived or
estimated output probabilities.

This paper is based on our previous work presented in [43],
but it substantially extends that work. Specifically, apart from
nonlinear kernel logistic regression, here we also utilize linear
ridge regression and logistic regression as hash functions, so
as to show that the learning of hash functions in SePH can
be open for different predictive models. Actually, the exper-
iments with linear ridge regression and logistic regression
also well demonstrate the effectiveness of SePH. Particularly,
for hash functions like linear ridge regression that cannot
naturally provide output probabilities with the predicted view-
specific hash codes, we further propose an effective and
general method to estimate the output probabilities, which
are required for determining unified hash codes. Moreover,
experiments are conducted on all benchmark datasets to val-
idate the effectiveness of the proposed probabilistic approach
for determining the unified hash code of an unseen instance.
We also perform significance tests for the improvements
gained by SePH over compared baselines, making the exper-
imental results more convincing. And we further analyze
the convergence of the optimization process for SePH with
experiments, and report its offline training costs and online
hashing costs on all datasets. More details of the experimen-
tal results, like standard errors, are also presented. Detailed
derivations for the gradient of the objective function of SePH
are provided in the supplementary material due to the limited
space.

We organize the remainder of this paper as fol-
lows. Section II introduces the previous related researches.
Section III presents formula details of the proposed SePH,
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including offline training and online hashing. Then exper-
iments are described in Section IV, including settings,
results, and analyses. And finally we come to conclusions in
Section V.

II. RELATED WORK

As mentioned previously, many effective unsupervised and
supervised cross-view hashing methods have been proposed.

Unsupervised cross-view hashing methods [20]–[25] gen-
erally utilize only the features of training data in different
views to exploit intraview and interview correlations for learn-
ing hash functions to project features into binary hash codes.
Song et al. [21] proposed intermedia hashing (IMH), which
learns linear hash functions with intraview and interview
consistencies to map view-specific features into a common
Hamming space. Zhen et al. [22] proposed spectral multi-
modal hashing based on spectral analysis of the correlation
matrix of different views and developed an efficient algo-
rithm to learn parameters from the data distribution so as
to obtain binary hash codes. Ding et al. [23] proposed
collective matrix factorization hashing (CMFH) that per-
forms collective matrix factorization in different views with
latent factor model to learn unified hash codes for training
instances. Zhou et al. [24] proposed latent semantic sparse
hashing (LSSH), which respectively, utilizes sparse coding
for images and matrix factorization for texts to learn their
latent semantic features and eventually maps the learnt fea-
tures to a joint abstraction space to generate unified hash
codes. Xie et al. [25] proposed online cross-modal hash-
ing, which performs analysis of cross-modal correlations for
efficient online hashing by learning shared latent codes.

Differently, supervised cross-view hashing meth-
ods [26]–[39] can further exploit available supervised
information like semantic labels or semantic affinities of
training data for gaining further performance improvements.
Bronstein et al. [26] proposed CMSSH that models the
projections from features in each view to hash codes as
binary classification problems with positive and negative
examples, and utilizes boosting methods to efficiently learn
them. Kumar and Udupa [27] proposed a principled cross-
view hashing method termed CVH, which is an extension
of the single-view spectral hashing [7] in multiview cases.
Specifically, CVH learns hash functions to map semantically
similar instances to similar hash codes across different views,
via minimizing the similarity-weighted pairwise Hamming
distances between the hash codes of training instances.
Zhen and Yeung [28] proposed co-regularized hashing
(CRH) to learn hash functions for multiview data based on a
boosted co-regularization framework. In CRH, hash functions
for each bit of the hash codes are learnt by solving DC
(difference of convex functions) programs, while the learning
for multiple bits is performed via a boosting procedure.
Yu et al. [32] proposed discriminative coupled dictionary
hashing (DCDH). Specifically, DCDH first learns a coupled
dictionary for each view with side information like category
labels to represent data from different views as the sparse
codes in a shared dictionary space, and then learns unified

hash functions for mapping them into binary hash codes.
Zhou et al. [34] proposed a spectral-based hashing method
termed KSH-CV, which removes the orthogonality constraints
on hash code bits and learns kernel hash functions under
an Adaboost framework to preserve interview similarities.
Zhang and Li [35] proposed SCM to take semantic labels into
consideration for the hash learning procedure for large-scale
datasets via maximizing semantic correlations. SCM can
learn orthogonal hash functions via eigenvalue decomposition
(SCM-Orth) or nonorthogonal ones via sequential learning
(SCM-Seq). Moreover, Jiang and Li [37] integrated feature
learning and hash-code learning into an end-to-end learning
framework with deep neural networks (one for each view) for
cross-view hashing.

After reviewing the previous cross-view hashing meth-
ods, especially the supervised ones, we realize that well
preserving the semantic affinities between instances is the
key to reducing the quality loss of retrieved neighbors and
achieving better performance. Generally, in supervised cases,
given semantic affinities of training data, previous methods
like [27], [34], and [35] utilize them to independently weight
each pairwise distance (similarity) between to-be-learnt hash
codes. Differently, in this paper the proposed SePH fur-
ther incorporates the correlations between pairwise Hamming
distances to force the to-be-learnt hash codes to better pre-
serve the semantic affinities. As will be demonstrated by
our experiments, SePH is reasonable and yields superior
performance.

III. PROPOSED SEPH

Fig. 2 illustrates the framework of the proposed SePH.
Like [23] and [24], considering the semantic consistency
between views, SePH generates one unified hash code for
each instance, rather than, respectively generate one differ-
ent hash code for each observed view as other previous
researches [26], [27], [34], [35]. That also allows SePH to
store data with lower space costs. As shown in Fig. 2,
for hash learning SePH requires the view-specific features
of training instances in each view and an affinity matrix
indicating their semantic affinities. Specifically, SePH first
transforms the given affinity matrix into a probability distribu-
tion P in semantic space, and learns the semantics-preserving
hash codes of training instances via utilizing their Hamming
distances for deriving another probability distribution Q in
Hamming space to approximate P (red dotted rectangle).
Then with learnt hash codes and view-specific features of
training instances, SePH learns hash functions in each view
independently for projecting features into hash codes (green
dotted rectangle). As for out-of-sample extension, given any
unseen instance, learnt hash functions in observed views first
predict view-specific hash codes. Then by deriving or esti-
mating the corresponding output probabilities with respect
to the predicted view-specific hash codes, SePH utilizes a
novel probabilistic approach to merge them and determine
a unified hash code (blue dotted rectangle). For ease of
presentation, here we first describe SePH in the case with
only two views, and then extend it to cases with more
views.
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Fig. 2. Illustration for the framework of the proposed SePH, using two-view toy data. For training, SePH first learns semantics-preserving hash codes of the
training data and then learns hash functions for each view. For out-of-sample extension, SePH first predicts view-specific hash codes and derive or estimate
their corresponding output probabilities, and then merges them into a unified one.

A. Problem Formulation

Suppose that the training data is made up of n training
instances, denoted as O = {o1, o2, . . . , on} with oi being the
ith one, and we can observe two views, i.e., X and Y , of the
training instances. Moreover, SePH requires the view-specific
feature matrices X ∈ R

n×dx and Y ∈ R
n×dy of the training data,

which are, respectively, built with the dx-dimensional feature
vectors in X and the dy-dimensional feature vectors in Y row
by row. Specifically, the ith row of X, denoted as Xi,· ∈ R

dx ,
is the feature vector of oi in the view X , and likewise the
ith row in Y , denoted as Yi,· ∈ R

dy , is the feature vector of
oi in the view Y . The affinity matrix of the training data,
denoted as A ∈ R

n×n, is also required by SePH to provide
supervised information. Here, A is supposed to be symmetric,
i.e., ∀1 ≤ i, j ≤ n, Ai,j = Aj,i, where Ai,j ∈ [0, 1] indicates
the semantic affinity between oi and oj. Generally, we can
derive A from manual scoring, or estimate it from correlations
between semantic labels of the training instances, like cosine
similarities. With A, semantics-preserving hash codes of the
training instances can be learnt by SePH, which form a hash
code matrix H ∈ {−1, 1}n×dc row by row. Specifically, the ith
row in H, denoted as Hi,· ∈ {−1, 1}dc , is the dc-bit hash code
of oi. Note that for model simplicity, here we utilize {−1, 1} to
represent binary hash codes, and they can be directly mapped
into {0, 1}. Table I summarizes the important symbols in this
paper, which will be frequently used in the later description
of SePH.

B. Semantics-Preserving Hashing

For preserving semantic affinities, if oi and oj are seman-
tically similar, their corresponding hash codes should also be
similar, and vice versa. As mentioned before, unlike previ-
ous related researches that utilize the given semantic affinities
for independently weighting each pairwise distance (similarity)
between hash codes, SePH can further incorporate the corre-
lations between distances (similarities) to make the semantic

TABLE I
IMPORTANT SYMBOLS IN SEPH

affinities of training instances be better preserved by their
to-be-learnt hash codes. Specifically, as illustrated in Fig. 2,
in SePH the given semantic affinities are first transformed
into a probability distribution P , and then another probability
distribution Q is derived from all the pairwise Hamming dis-
tances between to-be-learnt hash codes to approximate P in
Hamming space. In that way, by transforming each pairwise
Hamming distance into a probability, SePH standardizes them
and makes them dependent on each other, and thus correlations
between Hamming distances are incorporated.

To derive the probability distribution P in semantic space,
we define pi,j as the probability of observing the semantic sim-
ilarity between oi and oj among all pairs of training instances.
Assuming that pi,j is proportional to Ai,j, i.e., the correspond-
ing semantic affinity, we can derive pi,j as the following
formula, which guarantees that

∑n
i=1

∑n
j=1,j�=i pi,j = 1:

pi,j = Ai,j
∑n

i=1
∑n

j=1,j�=i Ai,j
. (1)
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To derive the probability distribution Q in Hamming space,
we define qi,j as the probability of observing the similarity
between oi and oj in Hamming space. Following t-SNE [44],
a student t-distribution with one degree of freedom is uti-
lized for transforming each pairwise Hamming distance into a
probability, as formulated as follows:

qi,j =
(
1 + h

(
Hi,·, Hj,·

))−1

∑n
k=1

∑n
m=1,m�=k

(
1 + h

(
Hk,·, Hm,·

))−1
(2)

where h(·, ·) denotes the Hamming distance between two hash
codes. Considering that ∀1 ≤ i ≤ n, Hi,· ∈ {−1, 1}dc , for any
two binary hash codes we can derive their Hamming distance
from their corresponding squared Euclidean distance as

h
(
Hi,·, Hj,·

) = 1

4

∥
∥Hi,· − Hj,·

∥
∥2

2. (3)

By substituting (3) into (2), we can rewrite qi,j as follows to
make it more tractable for optimization:

qi,j =
(

1 + 1
4

∥
∥Hi,· − Hj,·

∥
∥2

2

)−1

∑n
k=1

∑n
m=1,m�=k

(
1 + 1

4

∥
∥Hk,· − Hm,·

∥
∥2

2

)−1
. (4)

As mentioned previously, SePH aims to learn an optimal
binary H that can enable Q to well approximate P , so as
to preserve the semantic affinities modeled by P . Here, we
take the KL-divergence to measure the difference between
Q and P , as defined as follows:

DKL(P‖Q) =
n∑

i=1

n∑

j=1,j�=i

pi,j log
pi,j

qi,j
. (5)

Then by minimizing DKL(P‖Q), SePH can learn the optimal
binary hash code matrix H of the training data. And thus the
objective function of SePH is formulated as follows:

�0 = min
H∈{−1,1}n×dc

n∑

i=1

n∑

j=1,j�=i

pi,j log
pi,j

qi,j
(6)

where pi,j is defined as (1) and qi,j as (4). The objective
function above, however, is NP-hard for directly deriving the
optimal binary H. For making it more tractable, like previ-
ous work, here H is relaxed to be a real-valued matrix Ĥ.
Moreover, as shown in the following formula, to make the
learnt Ĥ near to the optimal binary H, we further introduce
a quantization loss term in the objective function to lead the
entries of Ĥ to be near to −1 or 1:

� = min
Ĥ∈Rn×dc

n∑

i=1

n∑

j=1,j�=i

pi,j log
pi,j

qi,j
+ α

C

∥
∥
∥
∣
∣
∣Ĥ

∣
∣
∣ − I

∥
∥
∥

2

2

s.t. qi,j =

(

1 + 1
4

∥
∥
∥Ĥi,· − Ĥj,·

∥
∥
∥

2

2

)−1

∑n
k=1

∑n
m=1,m�=k

(

1 + 1
4

∥
∥
∥Ĥk,· − Ĥm,·

∥
∥
∥

2

2

)−1
(7)

where ‖|Ĥ| − I‖2
2 denotes the quantization loss from real-

valued Ĥ to binary H, with I being a matrix whose every
entry is 1. Additionally, α is a model parameter for weighting

the quantization loss term, and C = n × dc is a normalizing
factor to make the parameter tuning for α less affected by the
hash code length and the training set size.

C. Solution and Implementation Issues

The objective function � of SePH is an unconstrained
nonconvex optimization problem. Actually, its nonconvexity
comes from both the KL-divergence term and the quantiza-
tion loss term. And thus for optimizing �, we can only derive
a locally optimal Ĥ. Compared to other hashing methods that
utilize a convex objective function, it may seem to be a weak-
ness of the proposed SePH. However, as our experiments will
demonstrate, the performance of SePH is fortunately insen-
sitive to the local optimality of its objective function. For
optimizing Ĥ, various effective gradient descent methods can
be utilized. Specifically, for the ith row of Ĥ, i.e., Ĥi,·, we can
derive its corresponding gradient as follows:

∂�

∂Ĥi,·
=

n∑

j=1,j�=i

(
pi,j − qi,j

)
(

1 + 1

4

∥
∥
∥Ĥi,· − Ĥj,·

∥
∥
∥

2

2

)−1

×
(

Ĥi,· − Ĥj,·
)

+ 2α

C

(∣
∣
∣Ĥi,·

∣
∣
∣ − 1T

)
� σ

(
Ĥi,·

)
(8)

where 1 is a dc-dimensional column vector with each entry
being 1, � denotes entry-wise multiplication between vectors,
and σ(Ĥi,·) is a dc-dimensional row vector made up of the
signs of entries in Ĥi,·. Actually, here σ(Ĥi,·) = (∂|Ĥi,·|/∂Ĥi,·),
and the gradients with respect to nondifferentiable zero entries
are simply set as 0. For detailed derivations, one can refer to
the supplementary material.

By calculating (∂�/∂Ĥi,·) for all 1 ≤ i ≤ n, effective gra-
dient descent methods can be applied to derive an optimal Ĥ.
Then by getting the signs of entries in Ĥ, we can derive an
optimized binary hash code matrix H, i.e., H = sign(Ĥ), with
the signs of zero entries in Ĥ set as 1. For gradient descent
methods, the time complexity of deriving H is O(Tn2dc),
where T is the number of needed iterations.

D. Learning Hash Functions

With the learnt hash codes of training instances, i.e., H,
SePH will independently learn hash functions for each view
to perform out-of-sample extension. Actually, for SePH, any
effective predictive models can be utilized as hash functions.
Hence, linear ridge regression, support vector machine (SVM)
or its variants like bagging-based SVM [45], logistic regres-
sion, kernel logistic regression, and many other models [46]
can be utilized.

In this paper, we respectively utilize linear ridge regression,
logistic regression, and kernel logistic regression, to learn the
projections from features to hash codes for each view. Linear
ridge regression is widely-used in many previous researches
on hashing, while for logistic regression and kernel logistic
regression, they are employed because both can naturally pro-
vide output probabilities with respect to the predicted hashing
results, which, as will be explained later, are required for deter-
mining the unified hash code of an unseen instance. Note that
here hash functions are learnt independently in different views.
And thus for ease of presentation, in the following, only the
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hash function learning process in the view X is described,
which can be directly applied to other views.

Like [23] and [26], here we learn hash functions bit by bit.
Actually, considering that bits in the hash codes may not be
independent of each other in cases, more sophisticated learning
methods that incorporate the correlations between bits can also
be investigated to obtain performance improvements, which
is left to our future work. Denote the column corresponding
to the kth bit in the learnt hash code matrix H as h(k) ∈
{−1, 1}n, i.e., the kth column of H. For linear ridge regression,
its objective function to project features, i.e., X, into h(k), is
given as follows:

F (k) = min
u(k)

∥
∥
∥h(k) − Xu(k)

∥
∥
∥

2

2
+ μ

∥
∥
∥u(k)

∥
∥
∥

2

2
(9)

where u(k) ∈ R
dx is the to-be-learnt weighting vector, and

μ is a weighting parameter for the regularizer. By setting
(∂F (k)/∂u(k)) = 0, the optimal u(k) can be directly derived
as u(k) = (XTX + μE)−1XTh(k), where E ∈ R

dx×dx is an
identity matrix. Here, the time complexity for deriving u(k) is
O(2nd2

x + d3
x ). Then by learning u(k) for all 1 ≤ k ≤ dc, we

can derive {u(k)}dc
k=1 as the hash function set based on linear

ridge regression for the view X . Here, SePH with linear ridge
regression as hash functions is denoted as SePHlinear.

Regarding logistic regression, its objective function is for-
mulated as follows:

G(k) = min
w(k)

n∑

i=1

log
(

1 + e−h(k)
i Xi,·w(k)

)
+ η‖w(k)‖2

2 (10)

where h(k)
i ∈ {−1, 1} is the ith entry in h(k), w(k) ∈ R

dx is the
to-be-learnt weighting vector, and η is a parameter for weight-
ing the regularizer. Here, G(k) can be optimized with gradient
descent methods, and the corresponding time complexity will
be O(T(k)

1 ndx) with T(k)
1 being the number of needed iterations.

By optimizing G(k) for all 1 ≤ k ≤ dc, the derived {w(k)}dc
k=1

will work as the hash function set based on logistic regression
for the view X . Here, SePH with logistic regression as hash
functions is denoted as SePHlr.

Furthermore, we introduce kernel logistic regression as hash
functions, expecting to utilize kernel tricks to better han-
dle nonlinear projections from features to hash codes. Here,
we map each feature vector Xi,· to the reproducing kernel
hilbert space (RKHS) as φ(Xi,·), and utilize them to build
a kernel feature matrix � row by row. In RKHS, for ker-
nel features φ(Xi,·) and φ(Xj,·), we can efficiently calculate
their inner product φ(Xi,·)φT(Xj,·) as κ(Xi,·, Xj,·) with kernel
tricks, where κ(·, ·) denotes a kernel function. Then similarly,
with kernel features, the objective function of kernel logis-
tic regression corresponding to the kth bit can be formulated
as follows:

H(k) = min
w(k)

n∑

i=1

log
(

1 + e−h(k)
i φ(Xi,·)w(k)

)
+ λ

∥
∥
∥w(k)

∥
∥
∥

2

2
(11)

where λ is a parameter for weighting the regularizer. Following
kernel CCA, here w(k) is required to be in the span of the
training kernel features, i.e., w(k) = �Tv(k) where v(k) is
the to-be-learnt spanning weights. Then φ(Xi,·)w(k) in (11) is

rewritten as (φ(Xi,·)�T)v(k), where we can calculate φ(Xi,·)�T

as κ(Xi,·, X). It can be observed that, for kernel logistic regres-
sion, its costs for training and predicting will be proportional
to n, i.e., the training set size, which is unsuitable for large
training sets. As pointed out by Hu et al. [47], generally the
training kernel features would be redundant for spanning w(k).
And thus here we propose to sample kernel features from � via
random sampling or other alternative methods like k-means to
build a much smaller one for spanning w(k), which is denoted
as �̂. Suppose that the sampling size is s(s 	 n). Then
we need to learn a s-dimensional weighting vector v̂(k) for
spanning w(k) with �̂, i.e., w(k) = �̂T v̂(k). And (11) can be
rewritten as follows:

H(k) = min
v̂(k)

n∑

i=1

log

(

1 + e
−h(k)

i

(
φ(Xi,·)�̂T

)
v̂(k)

)

+ λ

∥
∥
∥�̂T v̂(k)

∥
∥
∥

2

2
.

(12)

In this case, for kernel logistic regression, its costs for train-
ing and predicting will be proportional to the sampling size s
rather than the training set size n. Then its training can become
more scalable and its predicting can be more efficient. Here,
H(k) can also be optimized with gradient descent methods,
and the corresponding time complexity will be O(K +T(k)

2 ns),
where T(k)

2 is the number of needed iterations and K is the
costs of calculating ��̂T and �̂�̂T . By optimizing H(k)

for all 1 ≤ k ≤ dc, we can derive {�̂, v̂(1), v̂(2), . . . , v̂(dc)}
as the nonlinear hash function set based on kernel logistic
regression for the view X . It should be noticed that here all
v̂(k)(1 ≤ k ≤ dc) share an identical �̂, which can further
reduce the training and predicting costs for all dc kernel logis-
tic regressions. Specifically, the total training costs for the dc

kernel logistic regressions will be O(K + ∑dc
k=1 T(k)

2 ns) rather
than O(Kdc + ∑dc

k=1 T(k)
2 ns). Here, SePH with kernel logistic

regression as hash functions is denoted as SePHklr.

E. Generating Hash Codes

With learnt hash functions, the view-specific hash codes of
any unseen instance ou can be predicted. Taking the view
X as an example, assume that the feature vector of ou is
x, and its predicted view-specific hash code is denoted as
cX , with the kth bit denoted as cXk . Then we can derive that
cXk = sign(xu(k)) for linear ridge regression, cXk = sign

(
xw(k)

)

for logistic regression, and cXk = sign
(
(φ(x)�̂T)v̂(k)

)
for ker-

nel logistic regression, with sign(·) denoting the sign of an
expression. By predicting cXk for 1 ≤ k ≤ dc, we can get the
predicted view-specific hash code cX . The time complexity for
linear ridge regression, logistic regression, and kernel logistic
regression to predict cX are, respectively, O(dxdc), O(dxdc),
and O(K′ + sdc), where K′ denotes the costs of calculating
φ(x)�̂ in kernel logistic regression.

Given an unseen instance ou, if only one view is observed,
its predicted view-specific hash code can be directly utilized as
its unified hash code. Meanwhile, if both views are observed,
we need to determine its unified hash code by merging pre-
dicted view-specific hash codes from both views, especially in
cases, where the predicted view-specific hash codes conflict,
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as illustrated in Fig. 2. To tackle that, we propose a novel
probabilistic approach in this paper for determining the value
of each bit in the unified hash code of ou. As mentioned pre-
viously, the proposed combining approach requires the output
probabilities with respect to each bit of the predicted view-
specific hash codes, i.e., p(cZk = b|z) where Z ∈ {X ,Y},
1 ≤ k ≤ dc, b ∈ {−1, 1}, and z ∈ {x, y}.

Taking the view X as an example, here we introduce an
effective method to estimate p(cZk = b|Z) for hash functions,
especially for linear ridge regression and similar methods
that cannot naturally provide output probabilities with pre-
dicted results. Inspired by Gaussian mixture model (GMM),
for linear ridge regression and similar methods, to estimate
p(cXk = −1|x) and p(cXk = 1|x), we assume that the corre-
sponding original predicted result [i.e., xu(k) for linear ridge
regression] comes from either of two Gaussian distributions
that, respectively, correspond to −1 and 1. The two Gaussian
distributions are modeled as follows. During training, given
h(k) ∈ {−1, 1}n, the training instances are separated into two
sets, one consisting of training instances with the kth bit of
their corresponding hash codes being −1 and the other con-
sisting of those with the kth bit being 1. Suppose that features
of training instances in the first set forms a feature matrix Xn,
and those in the second set forms another feature matrix Xp.
With the learnt weighting vector u(k), we can derive Xnu(k) and
Xpu(k), and both are assumed to be, respectively, sampled from
the two to-be-modeled Gaussian distributions corresponding to
−1 and 1. Then we take the mean value μn and the standard
deviation σn of Xnu(k) to model the Gaussian distribution cor-
responding to −1, and similarly take the mean value μp and
the standard deviation σp of Xpu(k) to model the Gaussian
distribution corresponding to 1. Similar to GMM, with both
Gaussian distributions, the output probabilities p(cXk = −1|x)

and p(cXk = 1|x) for any x can be estimated as follows:

gn = 1

σn
√

2π
exp

(

−
(
xu(k) − μn

)2

2σ 2
n

)

gp = 1

σp
√

2π
exp

(

−
(
xu(k) − μp

)2

2σ 2
p

)

p
(

cXk = −1|x
)

= gn

gn + gp

p
(

cXk = 1|x
)

= gp

gn + gp
. (13)

As for logistic regression and kernel logistic regression, the
required output probabilities are naturally provided, and can
be, respectively, derived as the following formulas, with b ∈
{−1, 1}:

p
(

cXk = b|x
)

=
(

1 + e−bxw(k)
)−1

(14)

p
(

cXk = b|x
)

=
(

1 + e
−b

(
φ(x)�̂T

)
v̂(k)

)−1

. (15)

With output probabilities derived or estimated, the predicted
view-specific hash codes can be merged into a unified one.
Suppose that for an unseen instance ou, its feature vectors
in X and Y are, respectively, denoted as x and y, and c ∈
{−1, 1}dc is its to-be-determined unified hash code, with the

kth bit denoted as ck. Then bit by bit, ck is determined as the
following formula:

ck = sign(p(ck = 1|x, y) − p(ck = −1|x, y)). (16)

Assuming that X and Y are conditionally independent on ck,
we can derive the following formula with Bayes’ theorem:

ck = sign(p(x|ck = 1)p(y|ck = 1)p(ck = 1)

− p(x|ck = −1)p(y|ck = −1)p(ck = −1)). (17)

Moreover, with the Bayes’ theorem, we can further transform
the formula above into the following one:

ck = sign

(
p(ck = 1|x)p(ck = 1|y)

p(ck = 1)

− p(ck = −1|x)p(ck = −1|y)

p(ck = −1)

)

(18)

where p(ck = b|z) = p(cZk = b|z) with b ∈ {−1, 1}, z ∈
{x, y},Z ∈ {X ,Y}, and all these probabilities can be derived
with (13), (14), (15), or using other more sophisticated esti-
mation methods. Here, p(ck = −1) and p(ck = 1) are the
priori probabilities for the kth bit being −1 or 1. In our
previous work [43], both priori probabilities are simply set
to be equal, i.e., p(ck = 1) = p(ck = −1). However, the
assumption about the balance between −1 and 1 in [43] can
sometimes be unreasonable, especially in some imbalanced
datasets. Therefore, here we propose that p(ck = −1) and
p(ck = 1) should be dataset-dependent, and statistics-based or
learning-based methods are expected to be utilized for estimat-
ing them. Specifically, in this paper, p(ck = −1) and p(ck = 1)

are, respectively, estimated as the relative frequencies of −1
and 1 in h(k), i.e., p(ck = −1) = (

∑n
i=1 Cond(h(k)

i = −1)/n)

and p(ck = 1) = (
∑n

i=1 Cond(h(k)
i = 1)/n) where Cond(·)

is a condition function returning 1 if the condition holds
and 0 otherwise. Actually, our experiments show that such a
dataset-dependent estimation method can help SePH to obtain
further performance improvements, compared to simply set-
ting p(ck = 1) = p(ck = −1). We will further investigate other
more sophisticated estimation methods in our future work.

For the unseen instance ou, with all ck(1 ≤ k ≤ dc)

determined, SePH will generate its unified hash code c. Note
that alternatively one can utilize multiview learning methods
like [48] and [49] to learn hash functions for each combination
of views and then directly generate unified hash codes without
combining, but that can probably lead to much higher learning
costs due to the “exponential explosion” of view combinations.

F. Extensions

Actually, for cases with more than two views, we can per-
form training for SePH in nearly the same way, except that we
need to learn hash functions for more views. Meanwhile, for
out-of-sample extension, after predicting view-specific hash
codes in the same manner, it is slightly different to merge them
into a unified one. Specifically, we extend (18) as follows for
cases of more views with similar derivations:

ck = sign

(∏m
i=1 p

(
ck = 1|zi

)

(p(ck = 1))m−1
−

∏m
i=1 p

(
ck = −1|zi

)

(p(ck = −1))m−1

)

(19)
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TABLE II
STATISTICS OF WIKI, MIRFLICKR, AND NUS-WIDE

where m ≥ 1 indicates how many views are observed, and zi

denotes the feature vector in the ith view. Here all the needed
probabilities can be derived or estimated in the same way as
those in (18).

IV. EXPERIMENTS

A. Experimental Settings

In this paper, we conduct experiments on three bench-
mark datasets to evaluate the proposed SePH. Specifically, the
benchmark datasets include Wiki [50], MIRFlickr [51], and
NUS-WIDE [52], and they are all with an image view and a
text view. Table II gives some statistics of them.

1) Wiki: It is made up of 2866 instances collected from
Wikipedia. For each instance, a 128-D bag-of-visual-words
SIFT feature vector is provided to describe its image view
and a 10-D topic vector is given to describe its text view.
Each instance is manually annotated with one semantic label
from ten candidates. Following [23] and [24], we take 25% of
Wiki to form the query set, and the rest works as the retrieval
set.

2) MIRFlickr: It originally contains 25 000 instances col-
lected from Flickr. Each instance consists of an image and
its associated textual tags, and is manually annotated with
one or more of 24 provided semantic labels. To avoid noises,
here we remove textual tags that appear less than 20 times in
the dataset, and then delete instances without textual tags or
semantic labels. After pretreatment, we get 16 738 instances
left. For each instance, an 150-D edge histogram is provided
to describe its image view, while its text view is represented
as a 500-D feature vector derived from PCA on its binary tag-
ging vector with respect to the remaining textual tags. We take
5% of MIRFlickr to form the query set, and the rest works as
the retrieval set.

3) NUS-WIDE: It is a large dataset originally contain-
ing 269 648 instances. Like MIRFlickr, each instance in
NUS-WIDE consists of an image and its associated textual
tags, and is manually annotated with one or more semantic
labels from 81 candidates. Following [23] and [24], here we
only keep the top ten most frequent labels and the correspond-
ing 186 577 instances annotated with them. For each instance,
a 500-D bag-of-visual-words SIFT feature vector is provided
to describe its image view, while its text view is represented
as a binary tagging vector with respect to the top 1000 most
frequent tags. We also take 1% of NUS-WIDE to form the
query set, and the rest works as the retrieval set.

Considering the small size of Wiki, we follow [23] and take
its retrieval set as the training set. As for the large MIRFlickr
and NUS-WIDE, to simulate real-world cases, where only

the supervised information of a small fraction of the data
is provided, for either dataset we just sample 5000 instances
from the corresponding retrieval set to form the training set.
It should be noticed that, the learnt hash codes of training
instances in the training process of SePH will be discarded
after hash functions are learnt, and then SePH generates hash
codes for all instances in the dataset with the learnt hash func-
tions. Moreover, although each bit in the hash codes generated
by SePH is in {−1, 1}, in our experiments we map them into
{0, 1} and compactly store them bit by bit. Like most previ-
ous hashing methods, to perform ANN retrieval for any query
hash code Hq, its Hamming distance to any ith hash code
Hi in the retrieval set, denoted as h(Hq, Hi), is calculated as
h(Hq, Hi) = bit_count(Hq ⊕Hi), where ⊕ denotes XOR oper-
ation between the bits of Hq and Hi, and bit_count counts
the number of 1 in the binary XOR result. Then we rank
all instances in the retrieval set based on their corresponding
Hamming distances in an ascending order and take the top
ones as the ANNs for the query instance.

In our experiments, the annotated semantic labels of any
training instance are represented as a binary labeling vector.
Then we derive the affinity matrix of each dataset, i.e., A in (1),
as the cosine similarities between labeling vectors of train-
ing instances. The only model parameter α in the objective
function of SePH [i.e., (7)] is empirically set as 0.01 for all
datasets. As for the learning of hash functions in each view,
μ in (9) for linear ridge regression in SePHlinear, η in (10) for
logistic regression in SePHlr, and λ in (12) for kernel logistic
regression in SePHklr, are automatically set via fivefold cross-
validation on the corresponding features and learnt hash codes
of training instances. Particularly, for kernel logistic regres-
sion in SePHklr, an RBF kernel is utilized, with its parameter
σ 2 set as the mean squared Euclidean distance between fea-
ture vectors of training instances. Additionally, on all datasets
the sampling size for �̂ in (12) is empirically set as 500.
We perform both random sampling and k-means sampling for
SePHklr, which are denoted as SePHklr+rnd and SePHklr+km,
respectively. To encourage further developments, the codes of
SePH will be published in a near future.

We employ the supervised CMSSH [26], CVH [27], KSH-
CV [34], SCM-Orth, and SCM-Seq [35], and the unsupervised
IMH [21], LSSH [24], and CMFH [23] as baselines to compare
with the proposed SePH. Note that for IMH, we calculate its
required affinity matrices with the provided semantic labels of
training instances, and thus it is actually supervised here. To
make fair comparisons, we carefully perform parameter tuning
for baselines, and report their best performance in this paper.
We perform ten runs for SePH and any compared baseline with
a nonconvex objective function with different initial values,
and report the average performance.

Following previous researches, we utilize mean average
precision (mAP) to measure the retrieval performance of all
cross-view hashing methods. A higher mAP value means bet-
ter retrieval performance. Here, the definition of mAP is given
as follows:

mAP = 1

|Q|
|Q|∑

i=1

1

mi

mi∑

j=1

precision
(
Ri,j

)
(20)
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TABLE III
CROSS-VIEW RETRIEVAL PERFORMANCE (mAP) OF SEPH (I.E., SEPHlinear , SEPHlr , SEPHklr+rnd , AND SEPHklr+km)

AND COMPARED BASELINES WITH DIFFERENT HASH CODE LENGTHS ON ALL DATASETS. FOR SEPH,
THE STANDARD ERRORS OF mAP OVER TEN RUNS ARE ALSO REPORTED

where Q is the query set with its size being |Q|, and for the ith
query, (1/mi)

∑mi
j=1 precision(Ri,j) denotes its average preci-

sion (AP), mi denotes the number of its ground-truth relevant
instances in the retrieval set, Ri,j is a subset of its ranked
retrieval result consisting of instances from the top one to
the jth ground-truth relevant one, and precision(Ri,j) measures
the precision value in Ri,j. Like [23] and [24], an instance
is ground-truth relevant to a query if they share at least one
semantic label.

B. Experimental Results

The cross-view retrieval performance of the proposed SePH
and the compared baselines on all datasets is reported in
Table III, including both the performance of retrieving text
with image (i.e., “image query v.s. text database”) and that
of retrieving image with text (i.e., “text query v.s. image
database”). For the former task, the image view of instances
in the query set is utilized to generate their corresponding
query hash codes, while for the latter one, the text view is uti-
lized. As for any instance in the retrieval set, like CMFH and
LSSH, SePH generates one unified hash code for both views.
Moreover, considering that the objective function of SePH
is nonconvex, here we also report the standard errors with
respect to the performance of SePHlinear, SePHlr, SePHklr+rnd,
and SePHklr+km over the ten runs on each dataset, so as to
investigate how different initial values of Ĥ can affect the
performance of SePH.

From Table III, we can get the following observations.
1) Even with varying hash code lengths, the proposed

SePH, including SePHlinear, SePHlr, SePHklr+rnd, and

SePHklr+km, significantly outperforms all compared
baselines on all the three benchmark datasets, which
well demonstrates its effectiveness. The superiority of
SePH is attributed to both its capability of better pre-
serving semantic affinities in Hamming space and the
effectiveness of the learnt hash functions.

2) On all datasets, the performance of SePH keeps increas-
ing as the hash code length increases, meaning that it
can well utilize longer hash codes for better preserv-
ing the semantic affinities. Meanwhile, as also observed
in [23], [34], and [35], the performance of CMSSH,
KSH-CV, and SCM-Orth decreases, which may be
caused by the imbalance between bits in the hash codes
learnt by singular value decomposition or eigenvalue
decomposition.

3) The standard errors with respect to the performance
of SePHlinear, SePHlr, SePHklr+rnd, and SePHklr+km are
quite small on all datasets (less than 2% of the corre-
sponding mAP value), meaning that the performance of
SePH is insensitive to the local optimality of its objective
function.

4) Generally, SePHlinear and SePHlr are inferior to
SePHklr+rnd / SePHklr+km, while on the large MIRFlickr
and NUS-WIDE, the performance of SePHlinear and that
of SePHlr are quite comparable to that of SePHklr+rnd /
SePHklr+km. That, on one hand, shows the superiority
of kernel logistic regression in modeling the nonlinear
projections from features to binary hash codes, and on
the other hand, also reflects the effectiveness of utiliz-
ing linear ridge regression or logistic regression as hash
functions.
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(a)

(b)

Fig. 3. Quality of the hash codes learnt by each algorithm on the training set
of NUS-WIDE with different hash code lengths, quantitatively measured by
their cross-view retrieval performance (mAP) on the training set. Performance
of (a) Image Query v.s. Text Database and (b) Text Query v.s. Image Database.

5) On all datasets, it can be seen that SePHklr+km is gen-
erally superior to SePHklr+rnd, but the superiority is
insignificant (less than 2%). Therefore, the performance
of SePHklr is insensitive to the sampling strategy for the
learning of kernel logistic regression.

Furthermore, we perform paired-sample t-test [53] for eval-
uating the significance of the improvements achieved by the
proposed SePH over the compared baselines in both cross-
view retrieval tasks with different hash code lengths on all
datasets. For each algorithm, we take the corresponding AP
values of the query set as samples from its AP distribution,
and compare them between algorithms for significance tests.
The significance level is set as a typical value 0.01 here.
And we find that the maximal P-value in all significance tests
between variants of SePH and compared baselines is around
10−7, which is far less than the significance level 0.01, mean-
ing that the improvements gained by SePH over the compared
baselines are statistically significant.

To get more inside details about the superiority of SePH,
we also analyze the quality of the learnt hash codes of
training instances. Specifically, on the training set of each
dataset, we utilize the corresponding learnt hash codes to per-
form cross-view retrieval, repeatedly using one as a query to
retrieve nearest neighbors from the rest, and then measure
the corresponding mAP value. Since we utilize the seman-
tic labels of instances to define their ground-truth relevance
for calculating mAP, the derived mAP values can quantita-
tively reflect how well the learnt hash codes can preserve
the given semantic affinities of training instances. Fig. 3

Fig. 4. Variances of the objective function value of SePH and the correspond-
ing quality of learnt hash codes for the training instances in NUS-WIDE as
the number of iterations increases, with the hash code length fixed as 16 bits.

illustrates the performance of learnt hash codes by SePH in
the two cross-view retrieval tasks on the training set of the
largest NUS-WIDE, with the hash code length varying from
16 to 128. Fig. 3 also presents the performance of baselines for
comparison. We can observe that SePH significantly outper-
forms the baselines, with its corresponding mAP being above
0.9. Actually, similar results can also be observed on Wiki and
MIRFlickr, with the corresponding mAP value of SePH being
1.0 on Wiki and above 0.9 on MIRFlickr. For more details, one
can refer to the supplementary material. Therefore, it can be
seen that the hash codes learnt by SePH can well preserve the
semantic affinities of training instances. Additionally, by com-
paring Fig. 3 and Table III, one can observe that the retrieval
performance of the learnt hash codes of training instances
is significantly better than that of the hash codes generated
by learnt hash functions. We attribute this to: 1) the view-
specific features of the three datasets are somewhat weak
and may not well describe the instance in the correspond-
ing view and 2) the employed predictive models, i.e., linear
ridge regression, logistic regression, and kernel logistic regres-
sion, may not be capable enough. Therefore, stronger features
and more powerful predictive models need to be further
investigated.

In our experiments, we utilize the method of gradient
descent with a momentum of 0.5 to optimize the objective
function � [i.e., (7)] of SePH. Here, we further conduct exper-
iments to analyze the convergence of the optimization process
and see how the quality of the learnt hash codes of train-
ing instances varies with iterations. Specifically, by fixing the
hash code length as 16 bits, we perform 200 iterations of
gradient descent on Wiki, MIRFlickr, and NUS-WIDE to opti-
mize �. Then for each iteration, we calculate the value of �.
Meanwhile, we take the corresponding value of Ĥ to derive
hash codes of the training instances, and analyze their quality
by measuring their retrieval performance on the corresponding
training set. Note that since SePH learns one unified hash code
for each training instance, the retrieval performance of learnt
hash codes in image query v.s. text database will be identi-
cal to that in text query v.s. image database on the training
set, and thus we just report one. The experimental results on
the largest NUS-WIDE is illustrated in Fig. 4, and those on
Wiki, MIRFlickr are provided in the supplementary material
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TABLE IV
COMPARISONS BETWEEN THE PROPOSED PROBABILISTIC APPROACH (I.E., SEPHlinear , SEPHlr , SEPHklr+rnd , AND SEPHklr+km)

AND OTHER STRATEGIES FOR DETERMINING THE UNIFIED HASH CODES OF UNSEEN INSTANCES

due to the limited space. Then we can obtain the following
observations.

1) The optimization process for SePH can generally con-
verge in around 100 iterations, and for Wiki and
MIRFlickr it can even converge faster.

2) As the number of iterations increases, the quality of the
learnt hash codes of training instances quickly increases
and then converges.

C. Experimental Validations of the Proposed Probabilistic
Approach for Determining Unified Hash Codes

To validate the proposed probabilistic approach for deter-
mining the unified hash code of an unseen instance, i.e.,
(18) and (19), we further conduct experiments on all datasets to
see whether it can help to improve the cross-view retrieval per-
formance. As all datasets contain only two views, i.e., image
and text, for comparison, we introduce the following baselines
with other strategies.

1) SePH•[Img]: Using the predicted hash code from the
image view as the unified one.

2) SePH•[Txt]: Using the predicted hash code from the text
view as the unified one.

3) SePH•[Rand]: Randomly taking −1 or 1 for a bit when
predicted values from different views conflict.

4) SePH•[Equal]: Using the proposed approach but setting
p(ck = 1) = p(ck = −1) for all bits in (18) and (19),
which is used in our previous work [43].

Here, SePH• stands for SePHlinear, SePHlr, SePHklr+rnd, or
SePHklr+km. And different combining strategies will result in
different unified hash codes for instances in the retrieval sets.
The experimental results are shown in Table IV. And we can
observe that with different hash code lengths on all datasets,

1) SePH• and SePH•[Equal] generally outperform
SePH•[Img], SePH•[Txt], and SePH•[Rand], which
well demonstrates the superiority of the proposed
probabilistic approach for determining the unified hash
codes of unseen instances.

2) SePH• generally outperforms SePH•[Equal], which
demonstrates the reasonableness of making p(ck = 1)

and p(ck = −1) dataset-dependent and the effective-
ness of estimating them with relative frequencies of −1
and 1 in the corresponding bit of the learnt hash codes
of training instances.

D. Comparison of Training and Hashing Costs

Apart from theoretical analyses, here we also conduct exper-
iments to compare the offline training costs and the online
hashing costs of the proposed SePH with those of baselines.
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Fig. 5. Analyses on affecting factors. Effects of the (a) model parameter α on the quality of the learnt hash codes of the training instances in each dataset,
(b) training set size on the performance of SePH, and (c) sampling size for learning kernel logistic regression on the performance of SePHklr , (b) and (c) are
conducted with 16-bit hash codes on the largest NUS-WIDE.

TABLE V
OFFLINE TRAINING COSTS AND ONLINE HASHING COSTS FOR

COMPARED HASHING METHODS THAT USE LINEAR RIDGE

REGRESSION AS HASH FUNCTIONS, IN TERMS OF SECOND

Considering that most baselines utilize linear ridge regression
as hash functions, here we only take SePHlinear, CMSSH [26],
CVH [27], IMH [21], LSSH [24], CMFH [23], and SCM-Orth
and SCM-Seq [35] for comparison. Specifically, by fixing the
hash code length as 128 bits to make the comparisons more
significant, we perform each compared hashing method on
Wiki, MIRFlickr, and NUS-WIDE, and then measure its time
costs for training and generating hash codes for all instances in
each dataset. The experiments are conducted on a server with
2 Intel Xeon E5645 CPUs and 48 GB RAM, with all com-
pared methods run on MATLAB 2014a. For simplicity, here
we perform 100 iterations for optimizing the objective function
of SePH on each dataset, which can well guarantee conver-
gence. Experimental results are reported in Table V. Note that
for SePHlinear, the training costs include those of learning the
hash codes of training instances and those of learning view-
specific hash functions. It can be seen that for offline training,
SePHlinear generally costs more time than most baselines,
but still costs significantly less time than the boosting-based
CMSSH and the sparse coding based LSSH. As for online
hashing, SePHlinear costs slightly more time than most base-
lines, as it needs extra time to estimate the output probabilities.
Meanwhile, its online hashing costs are still much lower than

those of LSSH, which generally needs to perform sparse cod-
ing for view-specific features. Actually, on average SePHlinear

costs less than 0.1 ms for generating the hash code of an
instance, which would generally be acceptable in real-world
applications.

E. Effects of Model Parameters

As mentioned previously, the only model parameter α in the
objective function of SePH [i.e., (7)] is empirically set as 0.01
on all datasets. Here, we further analyze its effects with experi-
ments. Actually, the effects of α on SePH come from its effects
on the quality of the learnt hash codes of the training instances.
And thus in our experiments, by fixing the hash code length as
16 bits on each dataset and using identical initial values for Ĥ,
we vary α in {0, 10−4, 10−3, . . . , 1} to learn the hash codes of
the training set. For each setting of α, the quality of learnt hash
codes is measured with their cross-view retrieval performance
on the training set. Like the convergence analysis experiments,
considering that the retrieval performance of learnt hash codes
on a training set in the two cross-view retrieval tasks would
be equal, here we only report one, as illustrated in Fig. 5(a). It
can be observed that as α increases from 0 to 1, on MIRFlickr
and NUS-WIDE the quality of the learnt hash codes of training
instances first increases and then decreases, while on Wiki it
keeps unchanged with an optimal mAP value of 1.0. The rea-
sonable experimental results show that an appropriate positive
α can force the learnt real-valued matrix Ĥ close to the opti-
mal binary hash code matrix H via reducing the quantization
loss, while a large α can lead the KL-divergence term to be
less optimized and thus disable the learnt hash codes to well
preserve the semantic affinities. It should also be noticed that
the empirical value 0.01 is near to the optimal settings for α

on all datasets and it consistently yields superior performance
than α = 0.

F. Effects of Training Set Size

To analyze how the training set size affects the performance
of SePH, by fixing the hash code length as 16 bits, we increase
the training set size of each dataset from 100 to 20 000 (2000
for Wiki and 14 000 for MIRFlickr), and measure the cor-
responding cross-view retrieval performance of SePH on the
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query set for each size. The experimental results on the largest
NUS-WIDE are illustrated in Fig. 5(b). It can be seen that
as the training set size increases, the performance of SePH,
i.e., SePHlinear, SePHlr, SePHklr+rnd, and SePHklr+km, keeps
increasing and finally tends to converge. Actually, on NUS-
WIDE, when the training set size increases to around 3000,
the performance of SePH tends to converge. Considering that
a training set size of 3000 is less than 2% of the retrieval set
size, the experimental results well demonstrate that SePH is
capable of exploiting the limited supervised information of a
dataset. And thus it can be applicable for large-scale datasets,
since SePH can be well trained with the supervised informa-
tion of just a small fraction. Similar experimental results can
also be observed on Wiki and MIRFlickr, as provided in the
supplementary material.

G. Effects of Sampling Size for Kernel
Logistic Regression

In previous experiments with respect to SePHklr, we empir-
ically utilize a sampling size of 500 to learn kernel logistic
regressions on all datasets. Here, we conduct experiments to
investigate its effects. Similarly, the hash code length is fixed
as 16 bits. And for each dataset, with learnt hash codes of train-
ing instances, we increase the sampling size from 100 to 5000
(2000 for Wiki), and respectively, utilize random sampling and
k-means sampling for each size to learn the corresponding
kernel logistic regressions as hash functions. Moreover, for
each sampling size, we measure the cross-view retrieval per-
formance on the query set with the hash codes generated by the
corresponding learnt hash functions. Fig. 5(c) shows the exper-
imental results on the largest NUS-WIDE, and we can see that
the performance of SePHklr, i.e., SePHklr+rnd and SePHklr+km,
first increases and then converges quickly as the sampling size
increases. Actually, on NUS-WIDE, when the sampling size
increases to around 1000, the performance of SePHklr tends to
converge. Moreover, the empirical setting of sampling size in
our experiments (i.e., 500) achieves over 98% of the perfor-
mance achieved by the largest sampling size (i.e., 5000), while
its training and predicting costs, as theoretically analyzed
before, would be much lower. And thus it is reasonable to per-
form sampling for the learning of kernel logistic regression in
SePHklr. It can also be observed that at small sampling sizes
(e.g., 100), k-means sampling shows more significant superior-
ity over random sampling. It is because that in such cases the
sampled kernel features are insufficient for spanning the to-be-
learnt weighting vector and k-means sampling is likely to find
better ones.

V. CONCLUSION

In this paper, we propose a supervised cross-view hash-
ing method termed SePH. For training, given the semantic
affinities of training data, SePH first transforms them into
a probability distribution and aims to approximate it with
another one derived from to-be-learnt binary hash codes of
training instances in Hamming space. Then with the hash
codes learnt, any kind of effective predictive models can be

learnt as hash functions in each view to project the cor-
responding features into binary hash codes, such as linear
ridge regression, logistic regression, kernel logistic regres-
sion, etc. To perform out-of-sample extension, given an unseen
instance, the learnt hash functions first predict view-specific
hash codes and derive or estimate the corresponding out-
put probabilities in each of its observed views, and then a
novel probabilistic approach is utilized to determine a unified
hash code. Experiments on three benchmark datasets show
that SePH yields state-of-the-art performance for cross-view
retrieval.
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