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Image Classification to Action Recognition

Deep ConvNets
[Krizhevsky et al. 2012]

Input: 227x227x3

Q: What if the input is now a small chunk of video? E.g. [227x227x3x15]
A: Extend the convolutional filters in time or perform spatiotemporal 
convolutions!

BasketballCat
Motion
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Spatiotemporal ConvNets – Temporal Fusion
[Karpathy et al. 2014]

The motion information did not be fully captured…

Applying 2D CONV
on a video volume
(multiple frames as 
multiple channels)
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Spatiotemporal ConvNets – C3D
[Tran et al. 2015]

Applying 3D CONV
on a video volume
Accuracy: 85.2%

Spatiotemporal ConvNets – Optical Flow
[Simonyan and Zisserman. 2014]

Two-stream VGGNet
Accuracy: 88.0% (UCF101)

Two-stream version works much better than either alone.

3D VGGNet
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Motivation 1: Long-Time Dependencies
All above ConvNets used local motion cues to get extra accuracy.
E.g. half a second or less
Q: what if the temporal dependencies are much longer?
E.g. several seconds even more 

Local motion leads to misclassifications when different actions
resemble in short time, though distinguish in the long term.
E.g. Pull-ups vs. Rope-climbing Classification result produced by

Two-stream ConvNets
[Simonyan and Zisserman, 2014]
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Long-Time Solution – RNNs
[Donahue et al. 2015]

[Ballas et al. 2016]

ConvNet neurons are recurrent
Only require 2D CONV routines. No
need for 3D spatiotemporal CONV.
Accuracy: 80.7%
However, convolutional depth is limited by memory usage

LRCN = ConvNets + LSTM
Long-term temporal extent: RNNs
model all video frames in the past.
Accuracy: 82.9%

Long-Time Solution – Convolutional RNNs

GRU

Learning difficulty in predicting high-dimensional features across states.
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Long-Time Solution – Snippets Fusion
Beyond short snippets [Ng et al. 2015]
• Explore various pooling methods
• CONV pooling worked best:

Perform max-pooling over the
final CONV layer across frames.

Accuracy: 88.2%

Two-stream fusion [Feichtenhofer et al. 2016]
• Where to fuse networks?
It is better to fuse them at the last
CONV layer
• How to fuse networks?
3D CONV fusion and 3D Pooling
over spatiotemporal neighborhoods.
Accuracy: 92.5%
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Long-Time Solution – Snippets Fusion
Temporal Segment Networks [Wang et al. 2016]
• Segmental consensus: average spatial/temporal features over 3 snippets
• Two new modalities: RGB difference and warped optical flow fields

Accuracy: 94.0%
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Motivation 2: Visual Interest
Above ImageNet fine-tuned ConvNets are easily fooled by
similar visual scenarios.
E.g. Front Crawl vs. Breast Stroke
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Classification result produced by
Two-stream ConvNets
[Simonyan and Zisserman. 2014]
Ground Truth: FrontCrawl
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Visual Interest Solution – Attention
[Sharma et al. 2016]
Attention mechanism:
Pro: Attention mask on the first-layer, giving very intuitive interpretability
Con: The attended features are not discriminative enough for recognition
Accuracy: 85.0%
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Spatiotemporal Pyramid Networks
• What is pyramid?

1st fusion level: fuse T temporal snippets for global motion features
2nd fusion level: attention module using global motion as guidance
3rd fusion level: merge visual, attention, motion features

• Why pyramid?
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Inputs
• Spatial: 1 RGB frame at time t
• Temporal: T optical flow snippets at an interval of τ around t
• L consecutive frames are covered by each snippet
• L is fixed to 10, τ is randomly selected from 1 to 10, in order to model 

variable lengths of videos with a fixed number of neurons 

14
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Spatiotemporal Compact Bilinear Fusion
For the long-time dilemma
• Full bilinear features are high dimensional and

make subsequent analysis infeasible
• STCB combines single modality (multi-snippet)

and multi-modality (spatiotemporal) features
• STCB preserves the representational ability and

efficiently reduces the output dimension

15
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Spatiotemporal Compact Bilinear Fusion
To avoid computing outer-product directly
To project outer-product to lower dimensional space
1. Count Sketch: Rnà Rd

2. Theorem: ψ (x ⊗ y) = ψ (x) ∗ ψ (y) 
3. ψ (x) ∗ ψ (y) = FFT−1 (FFT (ψ (x)) ⊙ FFT (ψ (y))) 

16
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Spatiotemporal Attention
To solve the visual interest problem
• Plays a role of a more accurate weighted pooling operation
• Attention guidance: for each grid location on the image feature maps, 

we use STCB to merge the spatial and temporal feature vectors
• Generate attention weights: CONV*2 à Softmax along each location

à Weighted pooling on the spatial feature maps
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Final Architecture – Pyramid
A framework extendible for almost all deep ConvNets
E.g. VGGNets, BN-Inception, ResNets, etc.

1st fusion level: fuse K temporal snippets for global motion features

2nd fusion level: attention module using global motion as guidance

3rd fusion level: merge visual, attention, motion features
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Technical Details
• BN-Inception turns out to be the top-performing base architecture.

Due to the limited amount of training samples on UCF101, complex 
network structures are prone to over-fitting.

• Training protocols consistent with [Wang et al. ECCV 2016]
• Cross modality pre-training: Use ImageNet pre-trained models to 

initialize the temporal ConvNet
Ø Average weights across the RGB channels in the first CONV layer
Ø Replicate them by the optical flow channel number (e.g. 20)

• Partial batch normalization: Freeze the mean and variance of all 
CONV layers except the first one (as the distribution of optical flow is 
different from the RGB, its mean and variance need to be re-estimated)

• Data augmentation: horizontal flipping, corner cropping, scale-jittering.
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Ablation Study
• Multi-snippets temporal fusion (optical flow only)

Fusion method Acc. 
Spatial ConvNet (AvgPool) 84.5%   
Att. (1-snippet as guidance) 84.3%  
Att. (3-snippets concat) 83.9%  
Att. (3-snippets STCB) 86.6%  

Fusion method 1-path 3-path 5-path
Concatenation 87.0%  88.4%  88.5%  
Element-wise sum -  87.9%  87.7%  
Compact bilinear - 89.3%  89.2%  

• Attention (spatial features only)
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Ablation Study
• Now we stack these fusion methods one by one

Model A B C D
Two-stream STCB 0  1 1 1 
Multi-snippets fusion 0  0 1 1 
Attention 0  0 0 1 
Accuracy 91.7% 93.2% 93.6% 94.6% 

Model B Model C Pyramid (Model D)

• t-SNE of 10 classes randomly selected from UCF101 
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Final Results
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• Spatially ambiguous classes can be separated by the
attention mechanism. E.g. Front Crawl vs. Breast Stroke

• Multi-snippets temporal fusion produces more global 
features and can easily differentiate actions that look 
similar in short-term. E.g. Pull-ups vs. Rope-climbing
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Future Work
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Thank you!

https://github.com/thuml/stpyramid


