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Abstract

Domain adaptation has become a resounding success in
leveraging labeled data from a source domain to learn an
accurate classifier for an unlabeled target domain. When
deployed in the wild, the target domain usually contains
unknown classes that are not observed in the source domain.
Such setting is termed Open Set Domain Adaptation (OSDA).
While several methods have been proposed to address OSDA,
none of them takes into account the openness of the target
domain, which is measured by the proportion of unknown
classes in all target classes. Openness is a critical point in
open set domain adaptation and exerts a significant impact
on performance. In addition, current work aligns the entire
target domain with the source domain without excluding
unknown samples, which may give rise to negative transfer
due to the mismatch between unknown and known classes.
To this end, this paper presents Separate to Adapt (STA), an
end-to-end approach to open set domain adaptation. The
approach adopts a coarse-to-fine weighting mechanism to
progressively separate the samples of unknown and known
classes, and simultaneously weigh their importance on fea-
ture distribution alignment. Our approach allows openness-
robust open set domain adaptation, which can be adaptive to
a variety of openness in the target domain. We evaluate STA
on several benchmark datasets of various openness levels.
Results verify that STA significantly outperforms previous
methods.

1. Introduction

Recent development of deep neural networks has im-
proved the performance of diverse computer vision tasks.
However, the substantial prerequisite of the performance
boost is the access to large amount of annotated training data,
which is often prohibitive in many real applications. When
labeled data is scarce in the domain of interest, a reasonable
alternative is a relevant domain with sufficient supervision.
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Figure 1. The open set domain adaptation problem, where the target
domain contains “unknown” classes absent in the source domain.

We term the domain of interest as the target domain and the
relevant domain as the source domain. However, data from
different domains are drawn from different distributions. The
domain gap can cause the model to make false predictions
in the target domain and degrade the performance [26, 24].

A convincing solution to diminish the distribution shift
across domains is domain adaptation. Existing domain adap-
tation methods seek to bridge domain gap by distribution
matching in feature-level [36, 4, 17, 19, 35, 3] or in pixel-
level [10, 31, 11, 22, 16]. However, most of previous meth-
ods assume that the source and target domains share the same
labels, known as Closed Set Domain Adaptation [25]. This
closed-set setting is still restricted in applications in the wild,
since we cannot decide whether source and target domains
share the same label space if no target annotations are avail-
able. A more realistic setting, Open Set Domain Adaptation
(OSDA), is therefore recently studied [25, 30, 21]. In this
paper, we mainly follow the setting proposed by Saito et al.
[30], where the target domain has all classes in the source
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Figure 2. An overview of the proposed Separate to Adapt (STA) approach to open set domain adaptation. Gray shapes are data of target
domain and shapes in color are data of source domain. Different kinds of shapes indicate different classes. (a) An example of open set
domain adaptation problem, where all source classes are in the target classes and target have unknown classes. (b) The situation after training
the multi-binary classifier Gc||Cs|

c=1 for deriving coarse weights to distinguish the unknown classes from known classes in the target domain.
Dashed curve in different colors indicates the decision boundary for each binary classifier Gc for the c-th class. It forces the target data of
unknown classes to move away from source data. (c) The situation after training the fine-grained binary classifier Gb for deriving more
accurate weights. Target data in shared classes and in unknown classes are deviated far away. (d) The situation after the final distribution
alignment, where target data in the shared classes are close to their source domain counterparts. Best viewed in color.

domain and further contains target-specific classes, as shown
in Figure 1. We need to classify data of known classes in
the target domain correctly, and reject data of all unknown
classes as “unknown” since we have no information about
these classes. Open set domain adaptation is more practi-
cal, especially for the “in-the-wild” setting where we cannot
constrain the boundary of classes in the target domain.

Open set domain adaptation introduces two challenges.
(1) As presented in classical domain adaptation, it is still es-
sential to mitigate the influence of distribution shift between
domains. (2) Additionally, aligning the whole distribution of
source and target domains as before will be risky since data
of unknown classes in the target domain can make perfor-
mance of domain adaptation model even inferior to a model
without adaptation. Such phenomenon is known as nega-
tive transfer [24]. Thus in open set domain adaptation, we
need to identify the boundary between known and unknown
classes as accurately as possible, even without accessible
information about the unknown classes. We should further
apply adaptation to the known classes in both domains.

Only a few approaches have been proposed to tackle open
set domain adaptation. Assign-and-Transform-Iteratively
(ATI) [25] studies a distance-based metric to iteratively as-
sign unknown samples. Open Set Back-Propagation (OSBP)
further attempts to solve problem with no unknown classes
in the source domain. Both approaches require some thresh-
old hyper-parameters to distinguish between known and
unknown classes, while setting the hyper-parameters fur-
ther require prior knowledge on target domain classes. Fur-
thermore, these methods do not take into account the pro-
portion of unknown classes in the target domain, which is
termed openness [32]. In real world applications, open-
ness can vary drastically and is not accessible before train-
ing. Thus, previous methods can be undermined by extreme
openness since the dominance of unknown classes leads to
difficulty in selecting the hyper-parameters and intensifies
negative transfer, validated empirically by experiments in

Figure 4. Besides, methods depending on pre-defined hyper-
parameters require heavy hyper-parameter selection work.
Hence only an openness-robust model equipped with an au-
tomatic known/unknown classes separation mechanism can
address open set domain adaptation efficiently and effec-
tively.

This paper proposes Separate to Adapt (STA), an end-
to-end approach to tackle open set domain adaptation under
various levels of openness. We adopt the domain adversarial
learning framework and add one more class to the source
classifier for “unknown” class. The main difference between
the known and unknown classes lies in that the known classes
differ from the source domain only with distribution shift
while unknown classes deviate from the source domain much
farther with both domain gap and semantic gap. Motivated
by this key observation, we develop a progressive separa-
tion mechanism consisting of a coarse-to-fine separation
pipeline. The first step is training a multi-binary classifier
with source data to estimate the similarity between target
data and each source class. In the second step, we select the
data with extremely high and low similarity as data of known
and unknown classes, and train a binary classifier with them
to perform fine separation on all target samples. We iter-
ate between the two steps and use instance-level weights
to reject samples of unknown classes in adversarial domain
adaptation. An overview of STA is given in Figure 2. Exper-
iments regarding different aspects of STA demonstrate that
STA outperforms state-of-the-art models on open set domain
adaptation datasets. We further demonstrate the STA can
work effectively and stably on diverse levels of openness.

2. Related Work
This section briefly reviews works related to ours, includ-

ing settings of domain adaptation and open set recognition.
Closed Set Domain Adaptation. Closed set domain

adaptation methods seek to alleviate performance degrada-
tion brought by domain discrepancy. A typical approach is



minimizing statistical distances between feature distributions.
Deep Adaptation Network (DAN) [17] adds adaptation lay-
ers to deep network and minimizes Maximum Mean Discrep-
ancy (MMD) between the kernel embeddings of distributions.
Central Moment Discrepancy (CMD) [38] similarly enables
domain adaptation by matching only first- and second-order
moments. Residual Transfer Network (RTN) [19] improves
DAN by adding a shortcut connection and entropy minimiza-
tion criterion. Joint Adaptation Network (JAN) [20] matches
the joint distributions of feature and label of the source and
target domains. Maximum Classifier Discrepancy [29] en-
ables domain adaptation by approximatingH∆H distance
[1] and minimizing it via feature adaptation. Inspired by Gen-
erative Adversarial Nets [6], domain adversarial learning has
been introduced to domain adaptation. Domain Adversarial
Neural Network (DANN) [4, 5] and Adversarial Discrimi-
native Domain Adaptation (ADDA) [35] employ a domain
discriminator to distinguish two domains while the feature
extractor is learned to confuse the domain discriminator in
a domain adversarial training paradigm. Conditional Do-
main Adversarial Network (CDAN) [18] improves DANN
by matching the joint distributions of labels and features.
Unfortunately, closed set domain adaptation methods cannot
be applied to open set domain adaptation since they suffer
from negative transfer and cannot reject unknown classes.

Open Set Recognition. A vast literature of open set
recognition has been conducted to reject outliers while cor-
rectly classifying inliers during testing. Scheirer et al. [32]
proposed a 1-vs-set machine to delineate a decision space
from the marginal distance. Open set SVM assigns proba-
bilistic scores to reject unknown samples [13]. They were
further improved with compact abating probability models
[33]. Bendale et al. [2] introduced OpenMax layer to harness
deep neural networks for open set recognition. Moreover,
Open-Set NN [14] extends upon the Nearest-Neighbor clas-
sifier to recognize samples from the unknown class. Note
that in open set recognition scenario, there exist outliers that
do not belong to the classes in the training dataset. In open
set domain adaptation, however, target samples and source
samples in the shared classes of both domains further follow
different distributions, making the task more challenging.

Open Set Domain Adaptation. This is the umbrella
our work falls under. Assign-and-Transform-Iteratively [25]
(ATI) exploits distance between the feature of each target
sample and the center of each source class to decide whether
a target sample belongs to one of source classes or the un-
known class. Open Set Back-Propagation (OSBP) [30] trains
a feature generator to lead the probability of a target sample
to be classified as “unknown” to deviate from the pre-defined
threshold. They train their feature extractor and classifier
in an adversarial training framework. However, for both of
them, problems arise when domain discrepancy is significant
or the openness between source and target classes varies in a

large range especially to be overly large.
We develop a Separate to Adapt (STA) network to address

open set domain adaptation. Our method is robust to a variety
of openness levels and does not need manual selection of the
threshold parameter between known and unknown classes.

3. Method
In this section, we present an overview of our proposed

method, and then describe in detail the training procedure.
Figure 3 shows the architecture of STA.

3.1. Open Set Domain Adaptation

In open set domain adaptation (OSDA), we have a source
domain Ds = {(xsi , ysi )}

ns
i=1 of ns labeled examples and a

target domainDt = {xtj}
nt
j=1 of nt unlabeled examples. The

source domain is associated with a set of classes Cs, which is
shared by the target domainDt, i.e. Cs ⊂ Ct, while the target
domain is further associated with a set of additional classes
Ct\s, all represented by “unknown” since we know nothing
about these classes. The source and target domains are
sampled from probability distributions p and q respectively.
In standard domain adaptation, we have p 6= q; and in open
set domain adaptation, we further have p 6= qCs , where qCs
denotes the distribution of the target domain data belonging
to the shared label space Cs. We define the openness as
O = 1 − |Cs||Ct| . Note that this definition is in line with the
openness introduced in open set recognition [32], since in
our scenario, the classes in the source domain are included
in the target domain.

Towards open set domain adaptation, this paper presents
Separate to Adapt (STA), an end-to-end approach that pro-
gressively separates the known classes and unknown classes
in the target domain, and simultaneously learns a transferable
feature extractor Gf (x) and a classifier y = Gy (Gf (x)) to
bridge the cross-domain discrepancy in the shared classes.

3.2. Separate to Adapt

The main challenges of open set domain adaptation in-
clude the negative transfer and known/unknown separation.
There exists interaction between the two challenges. Nega-
tive transfer is the phenomenon that a learner trained with
domain adaptation algorithms performs even worse than a
classifier trained solely on the source domain. In open set
domain adaptation, closed set methods will match the whole
target domain with the source domain, thus the unknown
classes are also matched with source data. This obvious mis-
alignment causes negative transfer. The solution to negative
transfer is only aligning the known classes with the source
domain, which exactly gives rise to the second challenge.
Therefore, a natural logic of the approach is separating the
known and unknown classes in the target domain and per-
forming feature adaptation only on the known-class samples.
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Figure 3. The proposed Separate to Adapt (STA) approach for
open set domain adaptation, which is divided into two parts by
the dashed line. The top part consists of a multi-binary classifier
Gc||Cs|

c=1 and a binary classifier Gb, which will generate the weights
w for rejecting target samples in the unknown classes Ct\Cs. The
bottom part consists of feature extractor Gf , classifier Gy and
domain discriminator Gd to perform adversarial domain adaptation
between source and target data in the shared label space. zs and zt
are the extracted deep features. ŷs and ŷt are the predicted labels.
z′ is the feature selected by Gc. The solid lines show the flow of
tensors, and the dashdotted lines indicate the weighting mechanism.

We follow this logic and design our architecture, as shown
in Figure 3. It is composed of two parts, where the top part
consists of a multi-binary classifier Gc||Cs|c=1 and a binary clas-
sifier Gb to generate weights w for rejecting target samples
in the unknown classes Ct\Cs. The bottom part consists of
feature extractor Gf , classifier Gy and domain discrimina-
tor Gd to perform adversarial domain adaptation between
source and target data in the shared label space Cs.

3.3. Progressive Separation

To separate the data of unknown and known classes in the
target domain, we employ a coarse-to-fine filtering process.
We utilize a multi-binary classifier, which is composed of
|Cs| binary classifiers denoted by Gc||Cs|c=1, to measure the
similarity between each target sample and each source class.
Each binary classifier is trained only with the source data.
The loss for all classifiers can be defined as

Ls =

|Cs|∑
c=1

1

ns

ns∑
i=1

Lbce (Gc (Gf (xsi )) , I (ysi , c)) , (1)

where Lbce is the binary cross-entropy loss and I (ysi , c) = 1
if ysi = c and I (ysi , c) = 0 otherwise. Each binary classifier
Gc outputs a probability pc for each target sample to measure
how possible the sample belongs to known class c. Thus,
the probability pc can be explained as the similarity between
the target sample and known class c. Data of known classes
in the target domain tend to have higher probability in one
of the shared classes than data of unknown classes. We use

the highest probability in p1, p2, ..., p|Cs| as the similarity
between each target sample xtj and the source domain:

sj = max
c∈Cs

Gc(Gf (xtj)). (2)

With such similarity definition, target data of known classes
will have high similarity to their source domain counterparts.
Correspondingly, target data of unknown classes will have
low similarity to all classes in the source domain.

Thus, we rank the similarity for all the target samples,
and choose samples with highest/lowest similarity to train
the binary classifier Gb. This filtering is relatively coarse but
has high confidence since we only use samples with extreme
similarity. It is also robust to different levels of openness
since we no longer need to choose hyperparameters manually
or using optimization tools.

Another filtering strategy is to cluster the similarities into
three clusters for highest, midium and lowest probability
respectively. Then we use the mean sh of the highest proba-
bility cluster as the threshold for target data of known class
where data with sj ≥ sh are selected into known classes.
And we use the mean sl of lowest probability cluster as
the threshold for data of unknown classes where data with
sj ≤ sl are selected into unknown classes.

With samples selected into known and unknown classes
by the multi-binary classifier, we further train a binary classi-
fierGb to finely separate known and unknown classes. Using
X′ to denote the set of filtered samples by the multi-binary
classifier, and dj to indicate whether a target sample xj ∈ X′

is labeled as known (dj = 0) or unknown (dj = 1), the fine-
grained binary classifier Gc can be trained as follows,

Lb =
1

|X′|
∑

xj∈X′

Lbce (Gb (Gf (xj)) , dj) . (3)

With the above progressive separation procedure, we can
separate data of known and unknown classes in the target
domain from coarse (Gc||Cs|c=1) to fine (Gb), thus making the
separation more accurate.

3.4. Weighted Adaptation

For the adversarial domain adaptation part, we first define
the classification loss of the source domain as follows,

Lscls =
1

ns

∑
xi∈Ds

Ly

(
G1:|Cs|
y (Gf (xi)), yi

)
, (4)

where Ly is cross-entropy loss, Gy is an extended classifier
for |Cs|+ 1 classes, i.e. the |Cs| known classes in the source
domain plus the additional “unknown” class in the target
domain. G1:|Cs|

y denotes the probabilities corresponding to
assigning each sample to the |Cs| known classes.

Then, we need to focus our model on aligning the distri-
butions of source and target data in the shared label space



Cs. Instead of using the output of Gb as a hard discriminator
between data of known and unknown classes, we propose to
use the softmax output of Gb as a soft instance-level weight,
i.e. wj = Gb (Gf (xj)), where a larger wj implies a higher
probability to be from the unknown class. Thus, we can ex-
ploit wj to define a weighted loss for adversarial adaptation
of the feature distributions in the shared label space Cs as

Ld =
1

ns

∑
xi∈Ds

Lbce (Gd (Gf (xi)) , di)

+
1∑

xj∈Dt

(1− wj)

∑
xj∈Dt

(1− wj)Lbce (Gd (Gf (xj)) , dj).

(5)
In addition, we need to pick out the samples of unknown

classes in the target domain to train Gf for the extra “un-
known” class. Based on the weight wj that measures the
separation of known and unknown classes, we can define the
weighted loss for discriminating the “unknown” class as

Ltcls =
1

|Cs|
1∑

xj∈Dt

wj

∑
xj∈Dt

wjLy

(
G|Cs|+1
y (Gf (xj)), luk

)
,

(6)
where luk is the unknown class, and through training all target
samples with large weights wj are assigned to the unknown
class. Similarly, G|Cs|+1

y (Gf ) is the probability of assigning
a target sample to the unknown class by classifier Gy .

We further incorporate the entropy minimization loss
Le on the known classes of target domain to enforce the
decision boundary to pass through low-density area in the
target domain [7, 19], enhanced by the weights as follows,

Le =
1∑

xj∈Dt

(1− wj)
∑

xj∈Dt

(1−wj)H
(
G1:|Cs|
y (Gf (xj))

)
,

(7)
where H is the entropy loss and H (p) = −

∑
k pk log pk.

It is noteworthy that we only aim to minimize the entropy of
target samples estimated to be the known classes, so we use
wj as instance-level weight for the entropy minimization.

3.5. Training Procedure

We divide our training procedure into two steps, a
known/unknown separation step and a weighted adversarial
adaptation step. We can also alternate between the two steps
to progressively adapt samples from the known classes while
reject samples from the unknown classes.

Step 1. We first train the feature extractor Gf and the
classifier Gy to classify source samples. Meanwhile, the
multi-binary classifier Gc, c = 1, 2, ..., |Cs| is trained in a
one-vs-rest way for each source class. We further select
target samples with high/low similarities to the source do-
main to train the fine-grained binary classifier Gb. Denote
by θf , θy , θb, and θc||Cs|c=1 the parameters of Gf , Gy , Gb, and

Gc||Cs|c=1. The optimal parameters θ̂f , θ̂b, θ̂y, and θ̂c||Cs|c=1 can
be found by

(θ̂f , θ̂y, θ̂b, θ̂c||Cs|c=1) = arg min
θf ,θy,θb,θc||Cs|

c=1

Lscls + Ls + Lb. (8)

Step 2. In this step, we implement adversarial adaptation
to align the feature distributions of known classes in the
target domain with the source domain, and train Gy for the
extra class with data from the unknown class. In this step, we
keep training the classifier with source samples to preserve
the knowledge from the known classes. Using θd to denote
the parameters of the domain discriminator Gd, the optimal
parameters θ̂f , θ̂y , and θ̂d can be achieved as follows,

(θ̂y, θ̂d) = arg min
θy,θd

Lscls + Ltcls + Ld + λLe, (9)

(θ̂f ) = arg min
θf

Lscls + Ltcls − Ld + λLe, (10)

where λ is a hyper-parameter to trade off the entropy loss.
With the proposed Separate to Adapt (STA) model, we

can efficiently separate the data of the known and unknown
classes in the target domain. Step 1 rejects outliers to avoid
distraction of unknown classes in Step 2, and Step 2 performs
adversarial adaptation to make the rejection pipeline in Step
1 more accurate. Since no threshold hyper-parameters are
selected manually in the whole process, we can avoid the
painful tuning in real scenarios when the openness O varies.

4. Experiments
We evaluate the STA model and compare it with state-of-

the-art methods in the context of open set domain adaptation.
Codes and data will be available at github.com/thuml.

4.1. Setup

Office-31 [28] is a standard benchmark for domain adap-
tation in computer vision with three domains Amazon (A),
Webcam (W) and DSLR (D). It contains 4,652 images from
31 categories. We follow previous work [30] using the same
set of known classes and unknown classes in the target do-
main. These tasks represent the performance where the
source and target domains have small domain gap.

Office-Home [37] is a challenging domain adaptation
dataset, crawled through several search engines and online
image directories. It consists of 4 different domains: Artistic
(Ar), Clipart (Cl), Product (Pr) and Real-World (Rw). Each
domain contains images from 65 object classes. We choose
(in alphabetic order) the first 25 classes as classes shared by
the source and target domains. The 26–65 classes belong to
the unknown class. We construct open set domain adaptation
tasks between each two domains in both directions, forming
12 tasks where domain discrepancy is substantially larger
than Office-31.

github.com/thuml


Table 1. Classification accuracy (%) of open set domain adaptation tasks on Digits (LeNet) and VisDA-2017 (VGGNet)

Method
Digits VisDA-2017

SVHN→MNIST USPS→MNIST MNIST→ USPS Avg Synthetic→ Real

OS OS* ALL UNK OS OS* ALL UNK OS OS* ALL UNK OS OS* ALL UNK bicycle bus car motorcycle train truck UNK OS OS*

OSVM [13] 54.3 63.1 37.4 10.5 43.1 32.3 63.5 97.5 79.8 77.9 84.2 89.0 59.1 57.7 61.7 65.7 31.7 51.6 66.5 70.4 88.5 20.8 38.0 52.5 54.9
MMD+OSVM 55.9 64.7 39.1 12.2 62.8 58.9 69.5 82.1 80.0 79.8 81.3 81.0 68.0 68.8 66.3 58.4 39.0 50.1 64.2 79.9 86.6 16.3 44.8 54.4 56.0
DANN+OSVM 62.9 75.3 39.2 0.70 84.4 92.4 72.9 0.90 33.8 40.5 21.4 44.3 60.4 69.4 44.5 15.3 31.8 56.6 71.7 77.4 87.0 22.3 41.9 55.5 57.8

ATI-λ 67.6 66.5 69.8 73.0 82.4 81.5 84.0 86.7 86.8 89.6 82.8 73.0 78.9 79.2 78.9 77.6 46.2 57.5 56.9 79.1 81.6 32.7 65.0 59.9 59.0
OSBP 63.0 59.1 71.0 82.3 92.3 91.2 94.4 97.6 92.1 94.9 88.1 78.0 82.4 81.7 84.5 85.9 51.1 67.1 42.8 84.2 81.8 28.0 85.1 62.9 59.2
STA 76.9 75.4 80.0 84.4 92.2 91.3 93.9 96.5 93.0 94.9 90.3 83.5 87.3 87.2 88.1 88.1 52.4 69.6 59.9 87.8 86.5 27.2 84.1 66.8 63.9

Table 2. Classification Accuracy (%) of open set domain adaptation tasks on Office-31 (ResNet-50)

Method A→W A→ D D→W W→ D D→ A W→ A Avg

OS OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

ResNet [9] 82.5±1.2 82.7±0.9 85.2±0.3 85.5±0.9 94.1±0.3 94.3±0.7 96.6±0.2 97.0±0.4 71.6±1.0 71.5±1.1 75.5±1.0 75.2±1.6 84.2 84.4
RTN [19] 85.6±1.2 88.1±1.0 89.5±1.4 90.1±1.6 94.8±0.3 96.2±0.7 97.1±0.2 98.7±0.9 72.3±0.9 72.8±1.5 73.5±0.6 73.9±1.4 85.4 86.8
DANN [4] 85.3±0.7 87.7±1.1 86.5±0.6 87.7±0.6 97.5±0.2 98.3±0.5 99.5±0.1 100.0±.0 75.7±1.6 76.2±0.9 74.9±1.2 75.6±0.8 86.6 87.6

OpenMax [2] 87.4±0.5 87.5±0.3 87.1±0.9 88.4±0.9 96.1±0.4 96.2±0.3 98.4±0.3 98.5±0.3 83.4±1.0 82.1±0.6 82.8±0.9 82.8±0.6 89.0 89.3
ATI-λ [25] 87.4±1.5 88.9±1.4 84.3±1.2 86.6±1.1 93.6±1.0 95.3±1.0 96.5±0.9 98.7±0.8 78.0±1.8 79.6±1.5 80.4±1.4 81.4±1.2 86.7 88.4
OSBP [30] 86.5±2.0 87.6±2.1 88.6±1.4 89.2±1.3 97.0±1.0 96.5±0.4 97.9±0.9 98.7±0.6 88.9±2.5 90.6±2.3 85.8±2.5 84.9±1.3 90.8 91.3

STA 89.5±0.6 92.1±0.5 93.7±1.5 96.1± 0.4 97.5±0.2 96.5±0.5 99.5±0.2 99.6±0.1 89.1±0.5 93.5±0.8 87.9±0.9 87.4±0.6 92.9 94.1

VisDA-2017 has two domains where the Synthetic one
consists of 152,397 synthetic 2D renderings of 3D objects
and the Real one consists of 55,388 real images. They have
12 classes in common. We follow [30] to construct open set
domain adaptation task. This setting validates the efficacy
of STA on large-scale synthetic-to-real learning tasks.

Digits have three standard digit classification datasets:
MNIST [15], USPS [12] and SVHN [23]. Each dataset
contains digits, ranging from 0 to 9. As previous works [30],
we construct three open set domain adaptation tasks: SVHN
→MNIST, MNIST→ USPS and USPS→MNIST.

Caltech-ImageNet is constructed from ImageNet-1K
[27] and Caltech-256 datasets. We fix the 84 common classes
as known classes and vary unknown classes from 0–916 to
testify the robustness against various openness levels.

We compare STA with several open set recognition, do-
main adaptation and open set domain adaptation methods as
previous work [30]: Open Set SVM (OSVM) [13], DANN
[4], RTN [19], OpenMAX [2], ATI-λ [25], MMD+OSVM,
DANN+OSVM, ATI-λ+OSVM, and OSBP [30]. OSVM
is an SVM based approach using thresholding for each class
to recognize samples and reject outliers. MMD+OSVM and
DANN+OSVM are two variants of OSVM incorporating
Maximum Mean Discrepancy [8] and domain adversarial
network [4] in OSVM. OpenMax is a deep open set recog-
nition method with a module designed for outlier rejection.
ATI-λ maps the feature space of the source domain to the
target domain by assigning images in the target domain to
known categories. In our setting, there are no source-specific
classes. Therefore we manually choose the hyper-parameter
λ of ATI-λ by cross-validation. OSBP is the most recent
open set domain adaptation method achieving state-of-the-art
performance with an adversarial classifier to handle samples
of unknown classes. For closed-set methods, we use a confi-

dence threshold to decide whether a sample is from unknown
classes. In our experiments, we run each method three times
and report average accuracy. Standard deviation of Table 1
is omitted due to the limit of space.

Following previous works [25, 30], we employ four eval-
uation metrics: OS: normalized accuracy for all the classes
including the unknown as one class; OS*: normalized ac-
curacy only on known classes; ALL: the accuracy of all
instances (without averaging accuracy over the classes); and
UNK: the accuracy of unknown samples. We adopt the same
experiment setting on Digits and VisDA-2017 datasets as
OSBP [30] for fair comparison. We also study STA and all
comparing methods on Office-31 dataset with ResNet-50 as
the backbone. To further investigate the efficacy of STA with
larger domain gap and openness, we study the OS accuracy
of all the methods on Office-Home and Caltech-ImageNet
datasets with ResNet-50 as the backbone.

For the non-digit datasets, we train the proposed STA
models with backbone network VGGNet [34] and ResNet-
50 [9] pre-trained on ImageNet [27]. For digit datasets, we
use LeNet [15] and train the model from scratch. The domain
adversarial network is the same as DANN [4]. All layers
trained from scratch have learning rate 10 times that of the
pre-trained layers. We use momentum SGD with learning
rate searched in a grid range of 10−3 to 1 by cross-validation,
the momentum is set as 0.9 and the weight decay as 0.0005.

4.2. Results

As shown in Table 1, STA outperforms previous open set
methods on Digits dataset with different evaluation metrics.
Note that, on task SVHN → MNIST with larger domain
gap, STA improves OSBP by a large margin, which further
proves the effectiveness of STA under large domain gap.

We further compare STA with previous methods on the



Table 3. Classification accuracy OS (%) of open set domain adaptation tasks on Office-Home (ResNet-50)
Method Ar→ Cl Pr→ Cl Rw→ Cl Ar→ Pr Cl→ Pr Rw→ Pr Cl→ Ar Pr→ Ar Rw→ Ar Ar→ Rw Cl→ Rw Pr→ Rw Avg

ResNet [9] 53.4±0.4 52.7±0.6 51.9±0.5 69.3±0.7 61.8±0.5 74.1±0.4 61.4±0.6 64.0±0.3 70.0±0.3 78.7±0.6 71.0±0.6 74.9±0.9 65.3
ATI-λ [25] 55.2±1.2 52.6±1.6 53.5±1.4 69.1±1.1 63.5±1.5 74.1±1.5 61.7±1.2 64.5±0.9 70.7±0.5 79.2±0.7 72.9±0.7 75.8±1.6 66.1
DANN [5] 54.6±0.7 49.7±1.6 51.9±1.4 69.5±1.1 63.5±1.0 72.9±0.8 61.9±1.2 63.3±1.0 71.3±1.0 80.2±0.8 71.7±0.4 74.2±0.4 65.4
OSBP [30] 56.7±1.9 51.5±2.1 49.2±2.4 67.5±1.5 65.5±1.5 74.0±1.5 62.5±2.0 64.8±1.1 69.3±1.1 80.6±0.9 74.7±2.2 71.5±1.9 65.7

OpenMax [2] 56.5±0.4 52.9±0.7 53.7±0.4 69.1±0.3 64.8±0.4 74.5±0.6 64.1±0.9 64.0±0.8 71.2±0.8 80.3±0.8 73.0±0.5 76.9±0.3 66.7
STA 58.1±0.6 53.1±0.9 54.4±1.0 71.6±1.2 69.3±1.0 81.9±0.5 63.4±0.5 65.2±0.8 74.9±1.0 85.0±0.2 75.8±0.4 80.8±0.3 69.5

Table 4. Classification accuracy (%) of STA and its three variants on Office-31 (ResNet-50)

Method A→W A→ D D→W W→ D D→ A W→ A Avg

OS OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

STA w/o w 87.5±1.4 91.4±1.1 83.0±1.2 89.6±1.2 96.2±0.9 97.3±0.4 98.1±0.7 100.0±.0 80.3±1.5 79.3±1.5 71.2±1.2 74.3±1.2 86.1 88.7
STA w/o c 90.4±1.7 90.6±1.7 91.5±1.4 91.3±1.4 95.9±1.0 96.7±1.1 98.8±0.6 98.7±0.5 87.4±1.5 87.8±1.5 84.6±1.7 85.2±1.7 91.5 91.8
STA w/o b 85.0±1.5 89.0±1.5 90.6±1.2 91.5±1.3 94.8±1.9 97.6±0.8 96.2±0.6 98.2±0.5 77.7±2.2 82.5±2.4 78.9±2.6 83.6±3.5 87.2 90.4
STA w/o j 89.0±1.3 92.8±1.2 94.8±1.5 95.9±1.0 96.4±0.6 96.2±0.3 98.8±0.7 99.4±0.2 89.7±1.4 93.6±1.4 85.1±1.1 86.7±1.1 92.5 93.9

STA 89.5±0.6 92.1±0.5 93.7±1.5 96.1± 0.4 97.5±0.2 96.5±0.5 99.5±0.2 99.6±0.1 89.1±0.5 93.5±0.8 87.9±0.9 87.4±0.6 92.9 94.1

challenging VisDA-2017 dataset. STA achieves better per-
formance on most classes, verifying that STA works well
with large-scale dataset and very large domain gap between
synthetic data and real images.

Results on the six tasks of Office-31 dataset are shown in
Table 2. STA outperforms all comparison methods on most
tasks. In particular, we observe that closed set domain adap-
tation methods perform even worse than ResNet on some
tasks. Even with confidence thresholding, these methods
cannot work well for open set domain adaptation scenarios.
The performance sacrifice comes from the negative transfer
caused by wrongly matching unknown classes in the target
domain to known classes in the source domain.

Office-Home is challenging in large domain gap and dis-
joint label space between the source and target domains.
From Table 3, we observe that STA exceeds the performance
of existing methods by large margins on most tasks. In addi-
tion, we observe that previous open set domain adaptation
methods perform even worse than the ResNet backbone on
some tasks, since they all suffer from the negative effect of
unknown classes on domain adaptation. Huge gaps across
domains and label spaces aggravate the negative transfer is-
sue brought by the unknown classes and further degrade the
performance drastically. STA separates samples of unknown
classes before distribution matching, and is thus robust to
large domain gap and label-space discrepancy.

4.3. Analysis

Ablation Study. We compare STA with the variants of
STA in Table 4 on Office-31 dataset. (1) STA outperforms
STA w/o w, the variant without weighting target samples in
domain adversarial learning, indicating that aligning samples
of unknown classes with source samples leads to negative
transfer and performance degradation. Therefore, the weight-
ing we adopt to separate samples of known and unknown
classes is necessary. (2) Compared with STA w/o c which
replaces the multi-binary classifier with a softmax classifier,

STA achieves significant performance gains, demonstrating
multi-binary classifier can generate better similarities to mea-
sure the relationship of a target sample to each source class
independently. (3) STA improves over STA without binary
classifier Gb (STA w/o b), indicating that the binary classi-
fier can refine the separation between samples of unknown
and known classes based on the results of the multi-binary
classifier. (4) STA w/o j is the variants without alternation
between the two steps. STA improves over STA w/o j, vali-
dating the effectiveness of joint separation and adaptation.

Openness. To verify that STA is robust to different levels
of openness, we conduct experiments on Office-31 dataset
with openness O ranging from 0 to nearly 1 (1 is trivial with
no target known classes). As shown in Figure 4, previous
open set domain adaptation methods perform well only when
openness O is around 0.5. Performance degrades drastically
with openness approaching 0 or 1 because those methods are
prone to confounding known with unknown classes. ATI-λ
and OSBP are able to alleviate the impact of openness to
some extent by changing their threshold hyper-parameters
λ and t, but this relies on prior knowledge on the openness
before training, which is usually unrealistic in real-world
applications. With ranking mechanism to configure the multi-
binary classifier, STA is robust to openness change without
requiring any prior on target domain classes, and therefore
performs steadily when the openness varies. In addition, we
notice that when openness is close to 0, the performance of
STA is still better than DANN. This indicates that the sepa-
ration mechanism can even filter out noisy target samples in
the known classes.

We also conduct experiments with huge variation of open-
ness on Caltech-ImageNet, which is close to real-world
settings with many unknown classes. Results are shown in
Figure 4. We observe that STA exceeds previous methods
by large margins on known-class samples and reject outliers
accurately under all the openness levels.

Weight Quality. In Figures 5(a) and 5(b), we investigate



(a) Office-31 OS (b) Caltech-ImageNet Known (c) Caltech-ImageNet Unknown

Figure 4. Accuracy (OS) w.r.t. different openness levels in the target domain.

(a) A→W (Office-31) (b) VisDA-2017

Figure 5. The w by Gb on (a) A→W and (b) VisDA-2017. White bins denote target samples of known classes and black unknown classes.

(a) ResNet (b) DANN (c) OSBP (d) STA

Figure 6. Visualization of the features extracted by ResNet, DANN, OSBP, and STA on task A→ D using t-SNE embeddings, respectively.
Green points are source features, and blue points are target features of known classes, and red points are target features of unknown classes.

the proportion of samples w.r.t. weight w (the output of the
known/unknown binary classifier Gb) on task A→W and
VisDA-2017 respectively. White bins stand for samples of
known classes and black bins for unknown classes, both from
the target domain. When the source domain and the target
domain are similar (Amazon and Webcam), the outputs of
unknown classes are almost 1 while those of known classes
are almost 0, indicating that STA perfectly separates target
samples into known and unknown classes. Furthermore,
when domain discrepancy is huge (Synthetic to Real), we
observe from Figure 5(b) that STA can still divide target
samples of known and unknown classes effectively.

Feature Visualization. We visualize the last-layer fea-
tures in ResNet, DANN, OSBP and STA on task Amazon
→ DSLR in Figure 6(a) to Figure 6(d). We can observe that
features of unknown classes and several known classes are
close or even mixed together, indicating that ResNet and
DANN cannot discriminate known and unknown classes dur-
ing training. In addition, DANN aligns features of source
samples with all target samples and suffers from negative
transfer. In Figure 6(c), features of known and unknown
classes are drawn apart to some extent, but features of target

known classes are not well classified because the adversarial
layers in OSBP performs unsteadily when source and target
domains are extremely imbalanced. As shown in Figure 6(d),
STA is capable of aligning target features of known classes to
source features accurately while features of unknown classes
are separated far apart even under big openness (O = 0.677).

5. Conclusions

In this paper we address the key challenge in open set
domain adaptation, openness, with a novel Separate to Adapt
(STA) model. The model clearly separates samples of un-
known and known classes in a progressive mechanism, and
matches features of known-class samples across source and
target domains. As validated on various benchmark datasets,
the model enables openness-robust open set domain adapta-
tion under diverse domain discrepancy and disjoint classes.
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