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Abstract

Fine-grained visual categorization has long been con-
sidered as an important problem, however, its real appli-
cation is still restricted, since precisely annotating a large
fine-grained image dataset is a laborious task and requires
expert-level human knowledge. A solution to this problem
is applying domain adaptation approaches to fine-grained
scenarios, where the key idea is to discover the commonality
between existing fine-grained image datasets and massive
unlabeled data in the wild. The main technical bottleneck
lies in that the large inter-domain variation will deteriorate
the subtle boundaries of small inter-class variation during
domain alignment. This paper presents the Progressive Ad-
versarial Networks (PAN) to align fine-grained categories
across domains with a curriculum-based adversarial learn-
ing framework. In particular, throughout the learning pro-
cess, domain adaptation is carried out through all multi-
grained features, progressively exploiting the label hierar-
chy from coarse to fine. The progressive learning is applied
upon both category classification and domain alignment,
boosting both the discriminability and the transferability of
the fine-grained features. Our method is evaluated on three
benchmarks, two of which are proposed by us, and it out-
performs the state-of-the-art domain adaptation methods.

1. Introduction
Fine-grained recognition aims to categorize an object

among a large number of subordinate categories within the
same root category. It is a valuable problem in the sense
that it could potentially endow machine learning models
with strong cognitive abilities approaching human experts
on some tasks. For example, we might be interested in dis-
tinguishing subordinate species of birds such as pacific gull
or black-tailed gull. In recent years, there has been great ad-
vance in some fundamental problems of fine-grained recog-
nition. On one hand, the ability of deep networks for identi-
fying subtle differences between highly similar objects has
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Figure 1. The fine-grained domain adaptation problem is charac-
terized by the entanglement of large inter-domain variations,
small inter-class variations, and large intra-class variations,
which differs from classic domain adaptation scenario in granu-
larity. From left to right: red-winged blackbirds, yellow-headed
blackbirds, bobolinks, and brown creepers.

been greatly improved [23, 43, 45, 16, 46, 25, 13]. On
the other hand, an increasing number of fine-grained im-
age datasets have been collected, including a variety of root
categories such as birds [55, 54, 50], dogs [18, 27], flowers
[36, 1], aircrafts [52, 32], cars [44, 22, 26, 58], and food [4].

Still, it is unrealistic to cover all subordinate categories,
and the limited size of the existing datasets still hampers the
scalability of the fine-grained recognition algorithms. An-
notating large-scale image datasets with fine-grained labels
is time-consuming and requires strong expertise, especially
for some particular application domains. To solve this prob-
lem, a promising idea is to apply the domain adaptation ap-
proaches [38] to fine-grained recognition tasks. For exam-
ple, learning to categorize birds in the field guide may help
recognize bird species in the wild, as illustrated in Figure 1.
Thus, we may transfer the common knowledge from exist-
ing labeled datasets to massive unlabeled data, and save the
efforts of dense fine-grained annotations.

However, there are new challenges in the context of
fine-grained domain adaptation: the concurrence of large



Table 1. Comparisons among different fine-grained transfer methods (fewer requirements are better) (�: partially).

Method
require image-level labels? require additional annotations?

source domain target domain attributes object bounding boxes part landmarks

Gebru et al. [14] 3 � 3 7 7

Xu et al. [57] 3 � 7 3 3

Cui et al. [9] 3 3 7 7 7

Ours 3 (hierarchical) 7 7 7 7

inter-domain variations, small inter-class variations, and
large intra-class variations. The classic domain adaptation
algorithms overcome the inter-domain variations by mak-
ing images from different domains have similar distribu-
tions in the feature space [40, 28, 47, 12]. When it comes to
the fine-grained domain adaptation, the situation becomes
more complicated in that we have to confront tough issues
brought by the fine-grained categorization. A combination
of large intra-class variations and small inter-class varia-
tions may deteriorate the inter-class boundaries, and thus
make the classic domain adaptation algorithms fail in re-
spectively mapping objects of neighboring categories from
the source domain to the target domain. As in Figure 1,
yellow-headed blackbirds and bobolinks are perceptually
similar and may be mismatched across domains.

This paper aims to address these challenges by designing
a new fine-grained domain adaptation method, and presents
Progressive Adversarial Networks (PAN). In fine-grained
scenarios, natural objects have taxonomic ranks in biology,
and man-made objects also have reasonable hierarchical la-
bels. The general idea is integrating curriculum learning [3]
and adversarial learning [15] to enable domain adaptation
progressively from coarse-grained categories (easy) to fine-
grained categories (difficult). This disentangles the difficul-
ties by large inter-domain variations, small inter-class vari-
ations, and large intra-class variations. The training process
of our model only depends on hierarchical category labels
on the source domain. We evaluate our method on three
benchmarks, two of which are proposed by us, based on
several existing datasets for fine-grained visual categoriza-
tion and one brand-new dataset we collect from the web and
filter manually. We demonstrate that the proposed approach
outperforms the state-of-the-art domain adaption methods.

2. Related Work

2.1. Fine-Grained Visual Categorization

In recent years, fine-grained visual categorization has be-
come a prevalent problem in computer vision. As it re-
quires expertise to recognize the subtle differences between
the subordinate categories within the same root category,
some methods introduced additional labels such as part-
annotations and visual attributes to enhance fine-grained
recognition [5, 59, 60, 53, 14].

Instead of using the cost-prohibitive part-annotations or

additional attributes, some work attempted to improve the
fine-grained recognition performance in other ways. Krause
et al. [20] tried to solve the fine-grained recognition prob-
lem by generating parts using co-segmentation and align-
ment. Lin et al. [25] proposed a two-stream CNN model
based on the bilinear pooling, which is also trained with cat-
egory labels. Gao et al. [13] presented the compact bilinear
pooling method as an extension of [25] to lower the com-
putation complexity while retaining comparable accuracy.
Other variants of the original bilinear pooling method were
soon proposed and applied on the neural network models for
fine-grained recognition [24, 19]. Dubey et al. introduced
confusion in the activations [10] and revisited Maximum-
Entropy [11]. To further alleviate the difficulty of collecting
expert-level annotations manually, some methods were pro-
posed to make the fine-grained recognition models benefit
from the large-scale but noisy web data [21, 14, 57].

The above methods achieved fairly good performance
even without part-annotations, but yet, their scalability is
limited by the lack of fine-grained annotations for the vast
subordinate categories in the real world.

2.2. Domain Adaptation

Domain adaptation is to transfer knowledge from the
source domain to the target domain, which saves the cost
of manual annotations [38]. The discrepancy between the
source domain and the target domain causes the main dif-
ficulties for knowledge transfer. To learn domain-invariant,
transferable features, some work proposed different adapta-
tion layers based on deep networks [49, 28, 30]. Some more
recent work studied the domain-adversarial methods, which
incorporated the adversarial learning [15] into the domain
adaptation framework [47, 12]. These models aligned the
feature distributions of different domains by trying to fool
the domain discriminator. Through further conditioning the
adversarial adaptation models on the discriminative infor-
mation in class predictions, CDAN [29] sheds light into the
direction in addressing the problem of fine-grained cross-
domain recognition. PFAN [7] adopts an “Easy-to-Hard
Transfer Strategy” to select easy samples from the target do-
main and align these pseudo-labeled samples with their cor-
responding source categories. A basic distinction from our
work is that PFAN learns from progressive samples with-
out exploring the granularity information, while our method
learns from progressive granularity diametrically.



These methods above are insightful. Unfortunately, all of
them were not specifically designed for fine-grained cross-
domain visual categorization and did not explore the label
hierarchy specific in fine-grained recognition scenarios.

2.3. Fine-Grained Domain Adaptation

Fine-grained domain adaptation was first studied by Ge-
bru et al. [14]. They proposed a model that was trained with
annotated web images and evaluated with real-world data,
using the domain adaptation approach proposed in [47] and
requiring additional annotations of attributes. Only when
labeled images on the target domain are available, can its
semi-supervised adaptive loss be performed, which is only
a tailored design for fine-grained domain adaptation.

With a unique design of exploiting strong supervision,
Xu et al. [57] utilized detailed annotations including object
bounding boxes and part landmarks, in addition to stan-
dard image-level labels. As much knowledge as possible
was transferred from existing strongly supervised datasets
to weakly supervised web images.

Additionally, Cui et al. [9] achieved obvious improve-
ments on several fine-grained visual benchmarks, by fine-
tuning well-performing CNNs pre-trained on the large-scale
iNaturalist2017 dataset [51]. They proposed a measure to
estimate domain similarity and selected a subset from the
source domain that is more similar to target domain.

All above methods obtained encouraging performance.
However, the problem setups are completely different from
ours, as in Table 1. Our approach does not require attributes,
bounding boxes or part landmarks but relies on the hierar-
chical labels that are easier to obtain in fine-grained tasks.
To our knowledge, our work is the first method designed for
unsupervised fine-grained domain adaptation only depend-
ing on hierarchical image-level labels from source domain.

3. Method
In the fine-grained domain adaptation problem, we are

given a source domain S = {(x, yf , ykc |Kk=1)} of ns ex-
amples with both fine-grained label yf and coarse-grained
labels {ykc }Kk=1 in a K-layer class hierarchy, and a target
domain T = {(x, ?, ?)} of nt unlabeled examples. There is
a large discrepancy between the joint distributions P (x, y)
and Q(x, y) of source domain and target domain respec-
tively. Due to the distribution shift, a fine-grained recogni-
tion model trained on S cannot perform accurately on T .

The domain adversarial networks [12] are performant
domain adaptation models. They usually consist of three
network modules: the feature extractor F , the domain dis-
criminator D and the label predictor Y . A combination of
F and Y is trained with recognition objectives (only with
labels from the source domain). Simultaneously, to extract
domain transferable features, F and D work together and
play an adversarial game. The domain discriminator D is

trained to distinguish the source domain from the target do-
main, while the feature extractor F is trained to confuse D,
keeping it away from making correct judgments.

The Progressive Adversarial Network (PAN) exploits
hierarchical labels of fine-grained objects. As opposed to
fine-grained labels in the bottom layer of the label hierar-
chy, we refer to higher-level labels in the label hierarchy
as coarse-grained labels. Fine-grained domain adaptation is
very difficult due to its large inter-domain variations, small
inter-class variations, and large intra-class variations. In
contrast, coarse-grained domain adaptation is easy. Inspired
by curriculum learning [3], we begin with the easy granular-
ity, and then progressively move to the difficult granularity.
An accurate sup-class alignment across domains works as a
solid foundation for sub-class alignment.

3.1. Progressive Granularity Learning

In progressive granularity learning (PGL), we progres-
sively change the granularity of supervision for the recogni-
tion task on the source domain from coarse-grained to fine-
grained during training. We replace fine-grained ground-
truth labels with dynamic mixing of fine-grained ground-
truth labels and coarse-grained predicted distributions given
by the recognition model trained at the corresponding gran-
ularity, denoted as progressive labels, as shown in Figure
2. Predicted distributions convey information of relation-
ships between classes, which are considered beneficial to
domain adaptation [47]. The coarse-grained labels could be
more than one levels, say K (K ≥ 1). The coarse-grained
CNN, an auxiliary network effective at training and will be
removed at inference, is introduced with a feature extractor
G and K label predictors Ck, k = 1, ...,K. The data point
x with coarse-grained labels ykc , k = 1, ...,K is fed into the
coarse-grained CNN. The coarse-grained CNN is trained on
the source domain by minimizing the recognition objective:

K∑
k=1

Ly
(
ŷkc , y

k
c

)
, (1)

where ŷkc = Ck (G (x)) is the k-th coarse-grained predicted
distribution and Ly is the cross-entropy (CE) loss.

The fine-grained labels of all images are explored by the
fine-grained CNN, which is trained by minimizing a novel
coarse-fine hybrid loss we propose in this paper:

Lh(ŷkc |Kk=1, ŷf , yf ) = DKL

(
εyf + (1− ε)

K∑
k=1

ŷkc
K

∥∥∥∥∥ ŷf
)
,

(2)
where DKL is the Kullback-Leibler divergence, and ŷf =
Y (F (xi)) is the fine-grained predicted distribution, yf is
the corresponding ground-truth label. Besides, ŷkc has been
extended to the same dimension as ŷf , according to a class
subordination strategy as illustrated in Figure 3.
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Figure 2. Progressive Adversarial Networks (PAN). A shared feature extractor G and K label predictors Ck|k = 1, ...,K together form
the coarse-grained CNN (top) for coarse-grained recognition. Similarly, the fine-grained CNN (bottom) contains a feature extractor F and
a label predictor Y . Progressive Granularity Learning (PGL, red): the fine-grained ground-truth label yf and the coarse-grained predicted
distributions ŷc are mixed by ratio ε following a well-established schedule [12] for curriculum learning. We combine the coarse-grained and
fine-grained labels into progressive labels via class subordination in label hierarchy (details in Figure 3). Progressive Adversarial Learning
(PAL, green): the coarse-to-fine classifier predictions (supervised by progressive labels) are combined with the feature representations by
inner product and residual connection, and fed into a domain discriminator D. GRL is the gradient reversal layer [12].

original distribution extended distribution (before normalization)

Figure 3. The probability of each coarse-grained class ŷk
c is dupli-

cated to the corresponding positions of its subordinate fine-grained
classes. The extended elements are normalized into a probability.

During training, ε is progressively changed from 0 to 1,
following the common curriculum schedule studied in [12]:

ε =
1− exp (−10ρ)

1 + exp (−10ρ)
, (3)

where ρ is the ratio of the current number to the maximum
number of iterations. Eventually, with the decay of ε, the in-
fluence of coarse-grained labels will vanish and the coarse-
fine hybrid loss will converge to the fine-grained loss:

Lh(ŷkc |Kk=1, ŷf , yf ) = DKL (yf‖ ŷf ) , (4)

which plays the same role as the cross-entropy (CE) loss.
The reason why the coarse-fine hybrid loss works can be

analyzed from another perspective. First, if the label pre-
dictor is too confident in its outputs during training, it may
be over-fitting. Since the inter-class variations are small and
intra-class variations are large, it is unreasonable for the la-
bel predictor to assign full probability to the ground-truth la-
bel. Second, intemperate fitting of ground-truth labels may

disrupt the transferability of the features, as subtle relation-
ships between classes are destroyed. These subtle relation-
ships are expected to play an important role in domain adap-
tation when small inter-class variations greatly heighten the
uncertainty of domain alignment.

3.2. Progressive Adversarial Learning

While progressive granularity learning (PGL) enables
the supervised task on the source domain to progressively
move from coarse to fine, it does not necessarily guaran-
tee that the hierarchical classes are aligned across domains
progressively, first sup-classes and then sub-classes. Fortu-
nately, the predicted distribution ŷ = Y (F (x)) conveys im-
portant discriminative information. And it is progressive as
Y and F are trained to minimize coarse-fine hybrid loss. In-
spired by incorporating the conditional information into the
discriminator of GANs [35], we feed the progressive label
ŷ with the feature f = F (x) into the domain discriminator
D to enable progressive adversarial learning (PAL).

While it is natural to choose the concatenation of ŷ and
f as the input to the domain discriminator D, as adopted by
conditional GANs [34, 42, 17, 37], such a fusion strategy
is not expressive enough to model the complex relationship
between ŷ and f . Ingeniously, CDAN [29] employs outer
product to replace the concatenation. However, the explod-
ing feature dimension requires excessive memory.

To enable progressive adversarial learning, we employ a
different bilinear transformation to combine the predicted
distribution ŷ and the feature f . However, though feature



embeddings with predicted class information can enhance
discriminability, it has side effect that may completely de-
stroy the subtle differences between features in fine-grained
scenarios, especially when the sample is misclassified. And
misclassification is more likely to occur in fine-grained
tasks. Thus it is necessary to additionally introduce a resid-
ual connection by concatenating the features. Finally, the
fusion result is fed to the domain discriminator D:

Bi (ŷ, f) =
(
ŷTAf + b

)
⊕ f, (5)

where A and b are the learnable weight and bias of the bi-
linear transformation, and ⊕ is the residual concatenation.

3.3. Progressive Adversarial Network

The architecture of Progressive Adversarial Network
(PAN) is shown in Figure 2. The coarse-grained predictors
Ck|Kk=1, the fine-grained label predictor Y , and the domain
discriminator D are jointly trained by unifying progressive
granularity learning and progressive adversarial learning:

O
(
G,Ck|Kk=1, F, Y,D

)
=

1

ns

∑
x∈S

K∑
k=1

Ly
(
Ck (G (x)) , ykc

)
+

1

ns

∑
x∈S

Lh
(
Ck (G (x)) |Kk=1, Y (F (x)), yf

)
− λ

n

∑
x∈S∪T

Ld (D (Bi (Y (F (x)), F (x))) , d),

(6)

where d is the domain label of x, λ is a hyperparameter, and
n = ns+nt. Ly is the cross-entropy loss for coarse-grained
recognition, which is minimized by G and Ck|Kk=1. Lh is
the proposed coarse-fine hybrid loss for fine-grained recog-
nition, minimized by Y and F . Ld is the cross-entropy loss
for domain discrimination, minimized byD and maximized
by F . Eventually G, Ck|Kk=1, F , Y , D converge to:

(Ĝ, Ĉk|Kk=1) = arg min
G,Ck|Kk=1

O
(
G,Ck|Kk=1, F, Y,D

)
,

(F̂ , Ŷ ) = arg min
F,Y

O
(
G,Ck|Kk=1, F, Y,D

)
,

(D̂) = arg max
D

O
(
G,Ck|Kk=1, F, Y,D

)
.

(7)

Compared with previous domain adversarial networks,
PAN enables domain alignment in fine-grained sub-classes
by progressively aligning the feature distributions across
domains from coarse-grained to fine-grained. Note that a
correct coarse-grained alignment of super-classes is the ba-
sis of corresponding alignments of fine-grained sub-classes.
Though the auxiliary multi-task network seems to make the
architecture complicated (in Figure 2), all branches of PAN
are closely coordinated and indispensable. In the inference
phase, all components are discarded except the feature ex-
tractor F and the label classifier Y in the fine-grained CNN.

3.4. Theoretical Explanation

Coarse-grained models have higher generalization per-
formance and domain adaptation on coarse-grained cate-
gories is easier. Dubey et al. [11] defines the diversity of
features as the sum of the eigenvalues of the equivalent co-
variance matrix. And fine-grained problems are character-
ized as feature distributions with the following property:√

ν(ΦF , PFx )�
√
ν(ΦG, PGx ), (8)

where ν denotes the diversity of the features, PFx is the
fine-grained data distribution yielded by feature extractor
ΦF , and PGx is the generic data distribution yielded by fea-
ture extractor ΦG. The diversity in fine-grained visual cat-
egorization tasks is considered to be smaller than coarse-
grained tasks. The norm of weights Θ of the final classifier
layer is lower bounded by [11] (H is the entropy):

||Θ||2 ≥
log (C)− Ex∼Px (H (P (·|x; Θ)))

2
√
ν(Φ, Px)

. (9)

Unlike coarse-grained categorization tasks, the fine-grained
tasks generally have smaller diversity of features, which
will enlarge the norm of the classifier weights Θ and make
learning much more difficult. Hence, we introduce both the
progressive granularity learning and progressive adversarial
learning to enable domain adaptation from coarse-grained
(easy) to fine-grained (hard). This progressive strategy can
lower the difficulty of fine-grained domain adaptation.

4. Experiments
We evaluate the proposed PAN with state-of-the-art im-

age classification and domain adaptation models based on
deep learning architectures. Experiments are conducted on
an existing benchmark CompCars [58] and two brand-new
benchmarks we construct, CUB-Paintings and Birds-31.

Table 2. Number of images in the three benchmarks.

Dataset Domains #Images

CompCars [58]
Web 33,780

Surveillance 44,481

CUB-Paintings
CUB-200-2011 11,788

CUB-200-Painting 3,047

Birds-31
CUB-200-2011 1,848

NABirds 2,988
iNaturalist2017 2,857

4.1. Datasets

4.1.1 Benchmark I: CompCars
We evaluate PAN on CompCars [58] which can be split
into two domains: Web (W) and Surveillance (S), as shown
in Table 2. Only two levels of classes are available: 281



Figure 4. Examples for the first 31 categories from CompCars: Web (top) and Surveillance (bottom).

Figure 5. Examples for the first 31 categories from CUB-Paintings: CUB-200-2011 (top) and CUB-200-Paintings (bottom).

Figure 6. Examples for the 31 categories from Birds-31: CUB-200-2011 (top), NABirds (middle) and iNaturalist2017 (bottom).

models (finer) and 68 Makes (coarser). Figure 4 are ex-
ample images of the first 31 categories (models).

Notice that the car surveillance images are all in front
views, with various environment conditions such as foggy,
and at night, which are quite different from web images,
indicating that the transfer task S →W is extremely chal-
lenging. This may not be conducive to the evaluation of
methods. So we construct another two novel benchmarks.

4.1.2 Benchmark II: CUB-Paintings

CUB-Paintings contains two domains: CUB-200-2011 (C)
and CUB-200-Paintings (P), as shown in Table 2. Figure 5
are example images of the first 31 categories, with obvious
visual domain gap. Images are organized in a four-levels
hierarchy. From finer to coarser, there are 200 Species,
122 Genera, 38 Families, and 14 Orders.

CUB-200-2011 [54] is a fine-grained visual categoriza-
tion benchmark with 11, 788 bird images in 200 species.

CUB-200-Paintings is a dataset of bird paintings we col-
lect from the web and filter manually. The class lists of
CUB-200-Paintings and CUB-200-2011 are identical. We
search Internet to collect candidate images for a total of 200
classes. Both the English common name and binomial name
are adopted as retrieval keywords. Watercolors, oil paint-
ings, pencil drawings, stamps, and cartoons are all within
the scope of being selected. Then candidate images are fur-
ther filtered manually. Only paintings with obvious species
characteristics or with reliable labels are retained. However,
this dataset needs further polishing. 3, 047 images are insuf-
ficient for training very deep models, considering there are
200 categories. Potential label noise needs to be eliminated.

4.1.3 Benchmark III: Birds-31

There are three domains in Birds-31: CUB-200-2011 (C),
NABirds (N) and iNaturalist2017 (I). Not all of the im-
ages from the original datasets are incorporated into Birds-
31. The numbers of images selected are 1, 848, 2, 988
and 2, 857 respectively. Figure 6 shows example images
of all 31 categories from Birds-31. In contrast to CUB-
Paintings, inter-domain variations of Birds-31 are relatively

smaller. Labels are in four levels. Specifically, there are 31
Species, 25 Genera, 16 Families, and 4 Orders.

NABirds [50] is a fine-grained visual categorization
dataset, composed of 48, 000 images in 400 species.

iNaturalist2017 [51] is a benchmark for iNaturalist
2017 competition.There are 5, 089 categories in it, with
579, 184 training images and 95, 986 validation images.

We employ binomial nomenclature to categorize objects
from these three datasets, and then get the intersection, 123
categories. As Benchmark II contains up to 200 categories
and numbers of samples vary greatly across domains, 31
categories with a balanced sample size are selected finally.

4.2. Implementation

We implement all deep methods in PyTorch and we use
NVIDIA Titan RTX for training. We fine-tune ResNet-50
[16] model pre-trained on ImageNet. The classifier layers
are trained from scratch, and their learning rate is set 10
times that of the other layers. We adopt mini-batch SGD
with momentum of 0.9. Batch size is fixed to 36. The learn-
ing rate strategy is the same as [12]. Consistent with [12],
hyperparameter λ changes from 0 to 1 following a schedule
of λ = 1−exp(−10ρ)

1+exp(−10ρ) in all experiments. For fair compari-
son, all parameters are not changed across all transfer tasks.

4.3. Results

We evaluate Progressive Adversarial Networks (PAN)
and report the average classification accuracy based on three
random experiments. In addition to the widely-used base-
line Domain Adversarial Neural Network (DANN) [12], we
also compare PAN with generic visual categorization, fined-
grained visual categorization and domain adaptation meth-
ods: ResNet-50 [16], Inception-v3 [46], Bilinear CNN
[25], Deep Adaptation Network (DAN) [28], Joint Adap-
tation Network (JAN) [31], Adversarial Discriminative Do-
main Adaptation (ADDA) [48], Multi-Adversarial Domain
Adaptation (MADA) [39], Maximum Classifier Discrep-
ancy (MCD) [41], Conditional Adversarial Domain Adap-
tation (CDAN) [29], Batch Spectral Penalization (BSP) [8],
and Stepwise Adaptive Feature Norm (SAFN) [56].



Table 3. Classification accuracy (%) on Birds-31 (ResNet-50).

Method C→ I I→ C I→ N N→ I C→ N N→ C Avg

ResNet-50 [16] 64.25±0.28 87.19±0.15 82.46±0.45 71.08±0.23 79.92±0.21 89.96±0.29 79.14
Inception-v3 [46] 62.09±0.49 86.20±0.52 79.88±0.17 68.00±0.16 76.79±0.22 90.42±0.22 77.23
Bilinear CNN [25] 64.82±0.39 88.43±0.30 83.37±0.43 71.37±0.48 79.86±0.25 91.22±0.37 79.85
DAN [28] 63.90±0.49 85.86±0.66 82.91±0.60 70.67±0.33 80.64±0.48 89.40±0.23 78.90
DANN [12] 64.59±0.34 85.64±0.29 80.53±0.25 71.00±0.24 79.37±0.24 89.53±0.19 78.44
JAN [31] 63.69±0.99 86.29±0.25 83.34±0.20 71.09±0.48 81.06±0.39 89.55±0.38 79.17
ADDA [48] 63.03±0.42 87.26±0.25 84.36±0.47 72.39±0.31 79.69±0.11 89.28±0.26 79.33
MADA [39] 62.03±0.37 89.99±0.21 87.05±0.29 70.99±0.17 81.36±0.40 92.09±0.25 80.50
MCD [41] 66.43±0.44 88.02±0.28 85.57±0.25 73.06±0.43 82.37±0.19 90.99±0.17 81.07
CDAN [29] 68.67±0.25 89.74±0.45 86.17±0.26 73.80±0.17 83.18±0.28 91.56±0.24 82.18
CDAN+BSP [8] 68.64±0.37 89.71±0.26 85.72±0.32 74.11±0.16 83.22±0.33 91.42±0.45 82.13
SAFN [56] 65.23±0.26 90.18±0.32 84.71±0.35 73.00±0.40 81.65±0.21 91.47±0.08 81.08

PAN (Proposed) 69.79±0.10 90.46±0.35 88.10±0.08 75.03±0.18 84.19±0.15 92.51±0.31 83.34

Table 4. Accuracy (%) on CompCars (ResNet-50).

Method W→ S S→W Avg

ResNet-50 [16] 34.22±0.20 5.93±0.22 20.08
Inception-v3 [46] 29.74±0.17 4.58±0.31 17.16
Bilinear CNN [25] 36.51±0.23 6.74±0.35 21.63
DAN [28] 33.73±0.29 11.70±0.24 22.72
DANN [12] 33.67±0.32 12.38±0.12 23.02
JAN [31] 44.16±0.18 11.01±0.26 27.59
ADDA [48] 34.01±0.27 12.96±0.30 23.49
MADA [39] 41.77±0.20 11.89±0.29 26.83
MCD [41] 40.25±0.37 13.66±0.42 26.96
CDAN [29] 42.37±0.21 14.56±0.17 28.47
CDAN+BSP [8] 43.35±0.34 14.91±0.15 29.13
SAFN [56] 41.75±0.36 14.29±0.25 28.02

PAN 47.05±0.12 15.57±0.23 31.31

On CompCars as in Table 4, our method performs best
across both transfer tasks. It outperforms CDAN+BSP, the
second best method, by 2.1 percent. On CUB-Paintings
as in Table 5, our method achieves the best performance
across all two transfer tasks. We raise average accuracy
from the baseline DANN of 50.28% to 59.16%, a boost of
more than 8 percent. On Birds-31 as in Table 3, our method
achieves the highest average accuracy and the best perfor-
mance across all six tasks. The accuracy is improved by
about 5 percent compared to DANN.

Note that PAN yields larger boosts on CompCars and
CUB-Paintings than on Birds-31. There are two reasons.
First, the inter-domain variations of the former are much
larger than the later, as shown in Figures 4, 5, and 6. Small
inter-domain variations imply less gain by bridging the do-
main gap. Second, the classification accuracy of Birds-31 is
generally higher, leaving us with a relatively smaller room
for improvement. For example, in task N→C, the accuracy
of most methods is about 90%. And, as some neighboring

Table 5. Accuracy (%) on Cub-Paintings (ResNet-50).

Method C→ P P→ C Avg

ResNet-50 [16] 47.88±0.31 36.62±0.23 42.25
Inception-v3 [46] 51.59±0.21 40.72±0.15 45.88
Bilinear CNN [25] 54.09±0.35 41.59±0.57 47.84
DAN [28] 58.95±0.43 39.33±0.35 49.14
DANN [12] 57.54±0.38 43.01±0.29 50.28
JAN [31] 62.42±0.29 40.37±0.39 51.40
ADDA [48] 60.12±0.31 40.65±0.17 50.36
MADA [39] 63.67±0.23 44.28±0.30 53.98
MCD [41] 63.40±0.65 43.63±0.77 53.52
CDAN [29] 63.18±0.16 45.42±0.25 54.30
CDAN+BSP [8] 63.27±0.19 46.62±0.39 54.95
SAFN [56] 61.38±0.33 48.86±0.35 55.12

PAN 67.40±0.02 50.92±0.26 59.16

categories are visually indistinguishable, the performance
of expert annotators is only 93% [6].

4.4. Analyses

Ablation Study. Removing PGL and preserving PAL,
we denote the remainder of PAN by PAN-w.o.-Pro. or PAL
Only. Note that without PGL, PAL Only is not progres-
sive any more. The accuracy decreases sharply with PAL
Only (Table 6). We also testify the concatenation operator
in PAL. PAL outperforms PAL (w/o concat), proving that
the concatenation operator can prevent the model from de-
stroying subtle differences between features. PGL Only still
outperforms the baseline DANN by 4 percents.

Hierarchy Selection. PAN exploits labels at all levels.
On the dataset CUB-Paintings, coarse-grained labels are at
three levels: genus, family, and order. We analyzed
the variants of PAN with coarse-grained labels at only one
level, with improved results by PAN shown in Table 7.

Curriculum Schedule. The curriculum schedule that
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Figure 7. Analyses of cross-domain distribution discrepancy, error of ideal joint hypothesis, and diversity of fine-grained features.

the ε in Equation (2) follows is the same as that of λ in
Equation (6). This simple and commonly-used strategy [12]
outperforms the others, as shown in Table 8.

Table 6. Ablation Study: Accuracy (%) on CUB-Paintings.

Method C→ P P→ C Avg

PAL (w/o concat) 62.46±0.30 45.32±0.37 53.89
PAL Only 63.05±0.19 45.83±0.33 54.44
PGL Only 61.04±0.29 46.69±0.12 53.87

PAN (PGL+PAL) 67.40±0.02 50.92±0.26 59.16

Table 7. Accuracy (%) of PAN with different coarse-grained label
levels on CUB-Paintings.

Level Num C→ P P→ C Avg

Genus 122 65.37±0.46 48.33±0.35 56.85
Family 38 65.51±0.37 48.02±0.16 56.76
Order 14 66.32±0.34 49.43±0.23 57.88
Class 1 64.68±0.23 46.92±0.30 55.80

G+F+O – 67.40±0.02 50.92±0.26 59.16

Table 8. Accuracy (%) of PAN with different curriculum strategies
on CUB-Paintings.

Schedule Ours Linear Step Exponential

Avg 59.16 54.67 54.88 55.19

Distribution Discrepancy. In domain adaptation theory
[2, 33], A-distance is a measure of inter-domain variation:

dA = 2(1− 2err), (10)

where err is the error rate of a classifier that is trained to dis-
criminate the source domain and the target domain. Figure
7(a) depicts dA on transfer tasks C→P and P→C, with fea-
tures extracted by ResNet-50, DANN, PAN-w.o.-Pro. and
PAN. It is notable that dA on features extracted by PAN are
the smallest on both transfer tasks, which implies that these
features are more transferable across domains.

Ideal Joint Hypothesis. The expected error ET (h) of a
hypothesis h on the target domain can be bounded as [2]

ET (h) ≤ ES(h) +
1

2
dH∆H(S, T ) + Eideal, (11)

where ES(h) is the source error, dH∆H(S, T ) is theH∆H-
distance measuring the domain shift, and Eideal is the error
of an ideal joint hypothesis h∗ = minh ES(h) + ET (h) on
labeled source and target domains. Eideal is defined as

Eideal = ES(h∗) + ET (h∗), (12)

which measures the discriminability of features. For further
analysis of our method, we investigate this indicator of dis-
criminability. The average error rate of the new classifier
trained on the labeled data of source and target domains is
half of Eideal. The results are shown in Figure 7(b). As
expected, PAN enhances the discriminability of features.

Feature Diversity. Figure 7(c) is a plot of the top 2 prin-
cipal components (PCs) of features of ResNet-50 trained
from fine-grained (red) and coarse-grained (blue) labels on
CUB-200-2011, following the experiment in [11]. Fine-
grained features are concentrated with less diversity, in ac-
cordance with the theoretical analysis in Section 3.4.

Weight Sharing. The feature extractors should not share
weights. Differences between fine-grained features are sub-
tle and sharing weights destroys the subtle differences cru-
cial for discriminability. Using weight sharing, the average
accuracy on CUB-Paintings drops from 59.16% to 51.48%.

5. Conclusion
In this paper, we proposed the Progressive Adversarial

Networks (PAN) to solve the fine-grained domain adapta-
tion problem with only hierarchical image-level labels. The
key idea of our model is to align the corresponding classes
across domains from coarse-grained to fine-grained, first
sup-classes and then sub-classes. We also theoretically ex-
plained the proposed approach from the perspective of fea-
ture diversity. We compared PAN with prior works on three
benchmarks for fine-grained domain adaptation. And ex-
perimental results testified the effectiveness of our method.
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