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Abstract
Predicting future frames in videos remains an un-
solved but challenging problem. Mainstream re-
current models suffer from huge memory usage
and computation cost, while convolutional models
are unable to effectively capture the temporal de-
pendencies between consecutive video frames. To
tackle this problem, we introduce a entirely CNN-
based architecture, PredCNN, that models the de-
pendencies between the next frame and the sequen-
tial video inputs. Inspired by the core idea of recur-
rent models that previous states have more transi-
tion operations than future states, we design a cas-
cade multiplicative unit (CMU) that provides rela-
tively more operations for previous video frames.
This newly proposed unit enables PredCNN to pre-
dict future spatiotemporal data without any recur-
rent chain structures, which eases gradient propa-
gation and enables a fully paralleled optimization.
We show that PredCNN outperforms the state-of-
the-art recurrent models for video prediction on the
standard Moving MNIST dataset and two challeng-
ing crowd flow prediction datasets, and achieves a
faster training speed and lower memory footprint.

1 Introduction
Video prediction has recently become an important topic in
spatiotemporal learning, for the reason that it has broad ap-
plication prospects in weather nowcasting [Wang et al., 2017;
Shi et al., 2015], traffic flow prediction [Zhang et al., 2017],
air pollution forecasting and so forth. An accurate prediction
of future spatiotemporal data depends on whether the predic-
tion system is able to extract and utilize the relevant informa-
tion between the previous video sequence and future frames.
However, finding these relationships among the high dimen-
sional spatiotemporal data is non-trivial due to the complexity
and ambiguity inherent in videos. It always needs to deal with
object overlapping, shape deformations and scale variations,
which make prediction of future video frames a far more chal-
lenging task than the traditional time-series autoregression.
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Therefore, convolutional neural networks (CNNs) have
been introduced to solve the problem of video prediction
[Zhang et al., 2017; Mathieu et al., 2016]. Deep CNNs come
with great modeling capacity, enabling these models to cap-
ture the spatial correlations in consecutive video frames ef-
fectively. However, due to the inherent limitations of standard
convolutional structures, these CNN-based methods treat all
previous frames equally and are unable to model the tem-
poral dynamics existing in a continuous Markov process. A
relative simple transformation from the historical data to fu-
ture frames is learned, while temporal coherency and long-
term dependencies are hard to be preserved. Moreover, CNN-
based methods create representations for fixed length videos.

Compared with CNN-based methods, deep recurrent video
prediction models focus, to a great extent, on modeling tem-
poral dependencies and show a stronger power in making se-
quence to sequence predictions. However, due to the inherent
long-term gradient flow of recurrent neural networks (RNNs)
[Rumelhart et al., 1988; Werbos, 1990], these deep recurrent
models suffer from two main bottlenecks. The first one is the
well-known gradient vanishing problem: though RNNs make
sequential outputs, it is hard for them to capture long-term de-
pendencies across distant frames. That is to say, any changes
in previous frames at the first few time steps can barely make
an influence on the last few outputs. Another weakness is the
high computation cost and memory usage caused by hidden
states being updated repeatedly over time with full resolution.

In this paper, we propose PredCNN, an entirely convolu-
tional video prediction model, built upon causal convolution
structures in WaveNet [Van Den Oord et al., 2016a]. Inspired
by the core idea of recurrent models that capture the temporal
dependency with a transition between states, we design a cas-
cade multiplicative unit (CMU) that mimics the state-to-state
transition by applying additional gate-convolution operations
to the former state than the current state. Furthermore, unlike
other CNN-based video prediction models, PredCNN creates
hierarchical representations over video frames, where nearby
input frames interact at lower layers while distant frames in-
teract at higher layers. This hierarchical architecture stacks
several convolutional units on top of each other, thus can eas-
ily enlarge the temporal receptive field and allow a more flex-
ible length for the inputs. Compared with the chain structures
in deep recurrent models, PredCNN provides a shorter path to
capture long-term relationships between distant frames, thus



alleviates the gradient vanishing problem. The output at any
time step does not depend on the computations of all previ-
ous activities, allowing parallelization over all frames. We
evaluate our model on the standard Moving MNIST dataset
and two challenging crowd flow datasets and show that Pred-
CNN can yield a competitive prediction accuracy and effi-
ciency over other state-of-the-art methods.

2 Related Work
Many recurrent neural network models have been designed
for predictive learning of spatiotemporal data based on mod-
eling historical frames. [Ranzato et al., 2014] defined a recur-
rent architecture for spatial and temporal correlation discov-
ery enlightened by language modeling technique [Mikolov
et al., 2010]. [Srivastava et al., 2015] applied the LSTM
framework for sequence to sequence learning. [Shi et al.,
2015] extended the LSTM cell by changing normal state tran-
sitions to convolution operations so as to capture high-level
visual representations. This Convolutional LSTM (ConvL-
STM) model has become a primary structure in this area.
[Finn et al., 2016] developed an action-conditioned model
that captures pixel motions to predict the next frame. [Lot-
ter et al., 2017] presented a deep predictive coding network
(PredNet) where each ConvLSTM layer outputs local predic-
tions and only passes deviations to the following layers. In-
spired by two-stream ConvNets [Simonyan and Zisserman,
2014] for video action recognition, [Patraucean et al., 2016]
and [Villegas et al., 2017] introduced optical flow into recur-
rent models to describe motion changes. [Kalchbrenner et al.,
2017] proposed a probabilistic model, Video Pixel Network
(VPN), that makes predictions by estimating the discrete joint
distribution of the raw pixel values in a video and generating
frames with PixelCNNs [van den Oord et al., 2016b]. [Wang
et al., 2017] put up a PredRNN architecture with spatiotem-
poral LSTM unit (ST-LSTM) to extract and memorize spatial
and temporal representations simultaneously. Limited by the
chain structure of RNNs, these recurrent models suffer from
both computation burden and parallelization difficulty.

Although these RNN-based models enable video predic-
tions at multiple time frames, in many realistic spatiotemporal
forecasting applications, making an accurate prediction of the
next frame is far more important than predicting into a distant
future. Taking traffic flow prediction as an example, com-
monly used traffic flow images of an urban area are collected
every half an hour [Zhang et al., 2017] and do not change
rapidly. Therefore, the state-of-the-art approaches [Zhang et
al., 2016; 2017] particularly designed for this next-frame pre-
diction task have attempted ConvNets, deep residual struc-
tures [He et al., 2016] and parametric-matrix-based fusion
mechanisms [Zheng, 2015], to enhance their modeling capa-
bility of the spatial appearance in the near future. However,
these methods deal with the temporal cues by simply feeding
sequential input frames into different CNN channels, thus,
cannot capture the temporal relationships or maintain the mo-
tion coherency to some required extent. Different from these
CNN architectures, our proposed PredCNN model exploits a
novel gated cascade convolutional structure to capture tem-
poral dependencies underlying video frames in a logical way.

3 Preliminaries
3.1 Multiplicative Unit
The multiplicative unit (MU) [Kalchbrenner et al., 2017] is a
non-recurrent convolutional structure whose neuron connec-
tivity is quite similar as LSTMs [Hochreiter and Schmidhu-
ber, 1997]. But differently, it takes input x while discards the
hidden representation of all previous states, and thus cannot
capture the spatial and temporal representations simultane-
ously. There are no recurrent connections in the multiplica-
tive unit, and the computation at each time step does not rely
on any previous activities. Its key equations are as follows:

g1 = σ(W1 ∗ x+ b1)

g2 = σ(W2 ∗ x+ b2)

g3 = σ(W3 ∗ x+ b3)

u = tanh(W4 ∗ x+ b4)

MU(x;W) = g1 � tanh(g2 � x+ g3 � u),

(1)

where σ is the sigmoid activation function, ∗ denotes the con-
volution operation and � is the element-wise multiplication.
As an analogy to LSTM unit, g1, g2 and g3 resemble the out-
put gate, the forget gate and the input gate respectively, and u
plays the role of the input modulation gate. W1 ∼W4 and
b1 ∼ b4 represent the weights and biases of the correspond-
ing convolutional gates, while W denotes all gate parameters.
The multiplicative unit is employed as an effective building
block in Video Pixel Networks [Kalchbrenner et al., 2017],
which endows this model with powerful modeling capability
of spatial representations without recurrent chain structures.

3.2 Residual Multiplicative Block
However, similar to other LSTM-style structures, the MUs
are likely to suffer from gradient vanishing when stacked sev-
eral times in a deep network. Thus, a residual multiplicative
block (RMB) has been proposed to ease gradient propagation
by [Kalchbrenner et al., 2017]. RMB consists of two MUs
that are connected end-to-end, one convolutional layer at the
beginning and another at the end, and a residual connection
that directly links the input of first convolution layer to the
output of last convolution layer. Its equations are as follows:

h1 = W1 ∗ x+ b1

h2 = MU(h1;W2)

h3 = MU(h2;W3)

h4 = W4 ∗ h3 + b4

RMB(x;W) = x+ h4,

(2)

where W1 and W4 are 1× 1 convolutions that transform the
channel number of RMB’s internal feature maps. To accel-
erate computation, RMB first squeezes the size of the feature
maps before feeding them into the two stacked multiplicative
units, then restores the channel number to that of the inputs.

RMB outperforms individual MU by stabling the gradient
change rate and alleviating the gradient vanishing problem.
Also, it provides more expressive spatial representations by
making the gated convolutional structures deep. But similar
to MU, RMB also does not rely on the activities at previous
time steps. It cannot deal with spatiotemporal motions and
cannot be directly applied to spatiotemporal prediction tasks.



4 PredCNN
In this section, we present in details the predictive convo-
lutional neural network (PredCNN), which is entirely built
upon gated convolution structures. Initially, this architecture
is enlightened by the key idea of modeling both spatial ap-
pearances and temporal variations sequentially. To model the
temporal dependency in a well-specified way, we design a
cascade multiplicative unit (CMU) that predicts future frames
based on previous input frames, and guarantees that previ-
ous frames must take more operations than future frames. By
stacking CMUs hierarchically into PredCNN, we can model
the temporal dependencies like the recurrent chain structure.

4.1 Cascade Multiplicative Unit
Sequential modeling in most successful recurrent models has
a key ingredient: it explicitly models the dependency between
different time steps by conditioning the current state on the
previous state. However, existing convolution-based units in-
cluding the multiplicative unit (MU) do not support this key
dependency mechanism. In this paper, we design a novel cas-
cade multiplicative unit (CMU) based on gated convolutions
to explicitly capture the sequential dependency between the
adjacent frames. Our key motivations of CMU are two-folds:

• The current state depends only on previous states but not
vice versa. We guarantee this sequentiality by a cascade
convolution structure similar to the causal convolution in
WaveNet [Van Den Oord et al., 2016a], which computes
the current state by convolving only on previous inputs.

• Recurrent networks model the temporal dependency by
a transition from the previous state to the current state.
We model the temporal dependency without using state-
to-state transition—instead, we compute the hidden rep-
resentation of the current state directly using the input
frames of both previous and current time steps, and force
the previous time step to take more gated convolutions.

The diagram of the proposed CMU is shown in Figure 1.
Specifically, we first apply MUs to extract the spatial fea-

tures of each input frame and then add them element-wisely.
Then a gate is used to control the flow of hidden representa-
tions to the next layer. As we have mentioned before, MU
has LSTM-like structure and can capture a better represen-
tation of input frames rather than standard convolutions. The
CMU accepts two consecutive inputs Fl

t−1 and Fl
t and gener-

ates one output Fl+1
t , where Fl

t denotes the representation at
frame t of layer l. Due to a temporal gap, the two consecutive
states cannot be added directly. Recurrent models bridge the
temporal gap by applying a temporal transition from the pre-
vious state to the current state. Instead, we realize this by ap-
plying two MUs to the former frame Fl

t−1 and one MU to the
latter frame Fl

t. By having such LSTM-like cascade structure,
we explicitly guarantee sequential ordering and enhance cas-
cade dependency between the two consecutive frames, which
may generate more expressive representation Fl+1

t for them.
The same as recurrent models, we apply weight-sharing to
the two MUs in the previous state of CMU to reduce model
complexity, which also improves the performance potentially
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Cascade 
Multiplicative Unit
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o

Figure 1: Schematic structure of cascade multiplicative unit (CMU),
which accepts two inputs of previous and current states and gener-
ates an output for the current state. Colored blocks in the same color
represent weight-sharing multiplicative units, while white blocks de-
note gated structures containing convolutions along with non-linear
activation functions, and circles represent element-wise operations.

in the mean time. The key equations of CMU are as follows:

h1 = MU(MU(Fl
t−1;W1);W1)

h2 = MU(Fl
t;W2)

h = h1 + h2

o = σ(Wo ∗ h+ bo)

Fl+1
t = o� tanh(Wh ∗ h+ bh),

(3)

where W1 and W2 are parameters of orange MUs in the left
branch and blue MU in the right branch respectively, σ is the
sigmoid function, ∗ denotes the convolution operation and �
is the element-wise multiplication. Wo, Wh, bo and bh are
the parameters of the gated convolutions. We adopt Fl+1

t =
CMU(Fl

t−1,F
l
t;W) to simplify the representations of above

equations, where W represents all the learnable parameters.

4.2 PredCNN Architecture
We enable spatiotemporal predictive learning with cascade
convolutions by building the predictive convolutional neu-
ral network (PredCNN). The overall architecture consists of
three parts: (a) Encoder, which extracts abstract hidden rep-
resentation of each frame as input to CMUs; (b) Hierarchical
cascade structure, which models the spatiotemporal depen-
dencies using the proposed CMUs hierarchically as building
blocks; (c) Decoder, which reconstructs the hidden represen-
tations of CMUs back to the pixel space and generates future
frames. A schematic diagram of the PredCNN architecture is
illustrated in Figure 2. Note that the encoder and the decoder
consist of multiple gated convolutions (RMBs) for modeling
spatial appearances.



Encoder and Decoder
We adopt RMB-based encoder and decoder to extract spatial
features of input frames and reconstruct the pixel values of
output frames. As mentioned before, RMB is a residual struc-
ture composed of non-recurrent multiplicative units, making
it easy to explore expressive spatial representations and avoid
the gradient vanishing trap even with a deep architecture. We
stack le RMB blocks as the encoder and ld RMB blocks as
the decoder, where le and ld are two hyperparameters. All
frames share parameters in the encoder and the decoder.

To acquire a larger receptive field, we apply the dilated
convolution [Chen et al., 2016; Yu and Koltun, 2015] to the
encoder RMBs as [Kalchbrenner et al., 2017], where the dila-
tion rate is doubled every layer up to the limit 8 and repeated,
that is [1, 2, 4, 8, 1, 2, 4, 8, · · · ]. For accurate reconstruction,
we do not apply the dilated convolutions to the RMB decoder.
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Figure 2: The PredCNN architecture, comprised of encoder and de-
coder to process spatial appearances, and hierarchical cascade multi-
plicative units (CMUs) to capture spatiotemporal dependencies. We
design two variants of PredCNN: overlapping one with higher accu-
racy (top) and non-overlapping one with higher efficiency (bottom).

Hierarchical Cascade Structure
Besides the spatial appearances, the temporal dependencies
between the next frame and the sequential inputs are the key
to spatiotemporal prediction. Motivated by the big success of
WaveNet [Van Den Oord et al., 2016a] for generating natural
audios, we propose a hierarchical cascade convolution struc-
ture using the proposed CMU unit as building blocks, to cap-
ture the temporal relationships over high-dimensional video
frames. By taking the advantages of hierarchical CMUs, the
temporal receptive field is enlarged greatly and the inputs se-
quence length can be more flexible. When predicting the next
frame, only the input frames before the current time step can
be used, guaranteeing the temporal ordering constraint.

Specifically, Figure 2 gives an example of using the previ-
ous 4 frames Xt−3 ∼ Xt to predict the next frame X̂t+1. We
propose two structures of PredCNN for a trade-off of input
sequence length and training time. Figure 2 (top) shows an
overlapping structure, which has 3 layers (other than the en-
coder and decoder) since the input sequence length is 4. Sup-
pose Fl

t is the hidden representation of the input frame at time
step t of layer l, and the initial representation captured by the
encoder is at layer 0. We have Fl=3

t as the final combination
of temporal and spatial features, which will be passed to the
decoder to generate the next frame X̂t+1. Each of the inner
CMU units follows operation Fl+1

t = CMU(Fl
t−1,F

l
t;W)

as in Equation (3). Figure 2 (bottom) is a non-overlapping
structure of PredCNN with each state used only once in each
layer, thus has 2 layers (other than the encoder and decoder).
We can verify that for a sequence of length T , the overlapping
structure hasO(T 2) CMUs and the non-overlapping structure
has only O(T ) CMUs. As a tradeoff, the overlapping one is
more accurate and the non-overlapping one is more efficient.

Remarks: Different from the other CNN-based methods,
our PredCNN creates hierarchical representations over video
frames, where nearby input frames interact at lower layers
while distant frames interact at higher layers. Compared with
RNN-based chain structures, our PredCNN architecture en-
ables a highly paralleled optimization during training process,
where encoders and decoders for all frames can be trained in
parallel. Future states in the hierarchical CMUs only depend
on a limited number of hidden representations in the lower
layers, rather than being trapped by the strong dependencies
on computation of previous states in the same layer as recur-
rent models. This new hierarchical cascade convolution struc-
ture significantly reduces the computation cost and memory
usage while successfully capturing the temporal coherence.
PredCNN focuses more on capturing spatiotemporal relation-
ship between the next frame and multiple video input frames,
which is the main concern of many real applications, such as
crowd flow prediction and air quality forecasting. Note that
PredCNN can also predict multiple future frames by recur-
sively feeding the predicted frames as inputs to future frames.

5 Experiments
We evaluate PredCNN with state-of-the-arts on three datasets,
containing both realistic and synthetic images. Datasets and
codes will be released at https://github.com/thuml.



TaxiBJ and BikeNYC [Zhang et al., 2017] are two crowd
flow prediction datasets, collected from GPS trajectory mon-
itors in Beijing and New York respectively. We follow the
same experiment settings as in [Zhang et al., 2017], and
predict the citywide crowd movements instead of limited
blocks of several road segments. And most real spatiotempo-
ral prediction applications exploit preprocessed gridded data
rather than raw photographs, and require prediction accuracy
rather than prediction frequency. Besides, we also apply our
method to a commonly used video prediction dataset, Moving
MNIST, to further validate the superiority of our method.

We train all of our models with L2 loss, using Adam op-
timizer [Kingma and Ba, 2015]. Unless otherwise specified,
the starting learning rate of Adam is set to 10−4, and the train-
ing process is stopped after 100 epochs with a batch size of
16. We choose the mean squared error (MSE/RMSE) and the
mean absolute error (MAE) as two basic evaluation metrics.
All experiments are implemented in Keras [Chollet and oth-
ers, 2015] with TensorFlow [Abadi et al., 2016] as back-ends.

Baselines We compare the proposed PredCNN with several
baselines, including not only traditional and deep learning
models particularly designed for crowd flow prediction, but
also the state-of-the-art approaches originally applied to other
video prediction tasks. Specific introductions are as follows:

• ARIMA: Auto-Regressive Integrated Moving Average,
a well-known model predicting future time series data.

• SARIMA: Seasonal ARIMA for periodic time series.

• VAR: Vector Auto-Regressive, exploring the pairwise
correlation of all flows and usually being used in mul-
tivariate time series analysis.

• DeepST [Zhang et al., 2016]: a DNN-based spatiotem-
poral prediction model considering various temporal
properties specified for crowd flow prediction task.

• ST-ResNet [Zhang et al., 2017]: an updated version of
DeepST with residual structure designed for crowd flow
prediction. It further considers the closeness, period,
trend as well as external factors all together.

• VPN [Kalchbrenner et al., 2017]: a well-designed pre-
dictive model based on ConvLSTM. Due to the difficulty
of reproducing the experimental results of the VPN, we
compare our model with its suboptimal baseline version
that uses RMBs instead of PixelCNN as its decoder.

• PredNet [Lotter et al., 2017]: an efficient and effective
method particularly designed for one-frame prediction.

• PredRNN [Wang et al., 2017]: a state-of-the-art recur-
rent structure modeling spatial appearances and tempo-
ral variations simultaneously with dual memory LSTMs.

All compared models are evaluated on the same datasets as
PredCNN. Experimental results are shown in later sections.

5.1 TaxiBJ
Settings and hyperparameters We first evaluate our mod-
els on the TaxiBJ dataset, where each frame is a 32 × 32
grid map collected from the taxi GPS in Beijing every half

an hour, with crowd inflow and outflow being regarded as
two frame channels. We rescale the pixel values of the input
data from [0, 1292] to [−1, 1], treating them as continuous
variables, and rescale the predicted pixel values back to the
original range. The whole dataset contains 22, 484 piecewise
consecutive frames in four time intervals (1st Jul. 2013 ∼
30th Oct. 2013, 1st Mar. 2014 ∼ 30th Jun. 2014, 1st Mar.
2015 ∼ 30th Jun. 2015, 1st Nov. 2015 ∼ 10th Apr. 2016).
To make quantitative results comparable, we follow [Zhang
et al., 2017] and split the whole TaxiBJ dataset into a training
set of 19, 788 sequences and a test set of 1, 344 sequences.

In our experiments, we initially use the previous 4 frames
to predict the next crowd flow image. By recursively taking
generated images as inputs, our model is able to make pre-
dictions further into the future. PredCNN has 4 RMBs in the
encoder and 6 RMBs in the decoder. The number of channels
in CMUs is 64. Note that a more sophisticated architecture of
the encoder and decoder might result in better performance
but would also bring in more time cost and memory usage.

Table 1: Quantitative results of different methods on TaxiBJ.

Model RMSE MAE

ARIMA 22.78 -
SARIMA 26.88 -
VAR 22.88 -
DeepST [Zhang et al., 2016] 18.18 -
ST-ResNet [Zhang et al., 2017] 16.59 9.52
VPN [Kalchbrenner et al., 2017] 16.75 9.62
PredNet [Lotter et al., 2017] 16.68 9.67
PredRNN [Wang et al., 2017] 16.34 9.62

PredCNN (1 Conv2D / 1 Conv2D) 15.90 9.71
PredCNN (1 MU / 1 MU) 15.68 9.47
PredCNN (2 untying MUs / 1 MU) 15.63 9.43
PredCNN (CMU, non-overlapping) 15.23 9.26
PredCNN (CMU, overlapping) 15.17 9.22

Results As shown in Table 1, PredCNN makes a great im-
provement in prediction accuracy. Its RMSE decreases from
16.34 (former best) to 15.17. To assess the effectiveness of
the proposed cascade multiplicative unit (CMU), we perform
ablation experiments on four PredCNN variant structures. By
replacing the multiplicative units in the PredCNN architec-
ture with ordinary convolutions (1 Conv2D / 1 Conv2D), the
RMSE increases from 15.17 to 15.90. By removing one of
the weight-shared MUs in the left branch of CMUs (1 MU / 1
MU), the RMSE increases from 15.17 to 15.68. By untying
the two MUs in the left branch (2 untying MUs / 1 MU), the
RMSE increases from 15.17 to 15.63. These results validate
our design of CMU as an accurate convolutional surrogate
to the recurrent unit like LSTM. Two structures of PredCNN
(overlapping vs. non-overlapping) will be compared later.

We visualize the corresponding frame-wise prediction re-
sults in Figure 3. We observe that ST-ResNet, the previ-
ous state-of-the-art based on convolutions, tends to under-
estimate the pixel values, while recurrent models, especially



PredRNN, are likely to over-estimate them. The proposed
PredCNN model usually gives more accurate predictions. For
instance, the hot areas in yellow denote high crowd flow in-
tensities, where possibly the traffic jam happens. For these
regions, the prediction by ST-ResNet at time t + 1 is obvi-
ously smaller than the ground truth, indicating a relatively
high false negative rate. On the opposite, PredRNN has a
high false positive rate as it often predicts higher crowd flow
values, which is especially obvious at time steps t + 3 and
t+ 4. By contrast, our PredCNN model balances the F-score
and predicts more accurate hot areas of the crowd flow.

t-3 t-2 t-1 t t+1 t+2 t+3 t+4

PredCNN

PredNet

ST-ResNet

VPN baseline

Ground truth and predictions  Input sequence  

PredCNN

PredNet

ST-ResNet

VPN baseline

PredRNN PredRNN

t-3 t-2 t-1 t t+1 t+2 t+3 t+4

Ground truth and predictions  Input sequence  

Inflow Outflow

Figure 3: Samples of TaxiBJ inflow and outflow predictions. We
predict the next 4 frames each with its previous 4 real frames.

Furthermore, we compare PredCNN’s training time (until
convergence) and memory usage with those of the baseline
models (see Table 2). Our model takes less memory foot-
print and yields a higher convergence speed than the state-of-
the-art recurrent methods. It is worth noting that ST-ResNet
shares similar characteristics, which strongly proves the com-
putation efficiency of the CNN-based models. PredCNN
would thoroughly show its strength of highly paralleled opti-
mization when dealing with longer spatiotemporal sequences.

Table 2: Training time and memory usage on TaxiBJ.

Model Training Time Memory
(min) (MB)

ST-ResNet 258.5 1627
VPN 683.7 2369
PredNet 325.3 1601
PredRNN 340.6 2497

PredCNN (overlapping) 197.0 1345
PredCNN (non-overlapping) 137.4 1058

Table 1 and Table 2 show the comparison of two PredCNN
structures (overlapping and non-overlapping). They have tiny
quantitative differences on RMSE and memory usage but
huge distinction on training time. With acceptable RMSE
loss, we can substantially decrease the training time. This ad-
vantage of the non-overlapping structure is more prominent
for longer input sequences in the following section 5.3.

Besides one-frame prediction, we recursively apply our
PredCNN model trained with 4 inputs and 1 target to frame-
by-frame prediction task and compare it with the other video

prediction methods (see Table 3). At inference time, we only
show our model 4 input frames and make it resemble the re-
current models to predict the next 4 frames in a rolling style.
PredNet, as a strong competitor for one-frame prediction, per-
forms worse in this scenario. Evidently, PredCNN achieves a
better performance than all the others with lower RMSEs.

Table 3: Frame-wise RMSE of different methods on TaxiBJ.

Model Frame 1 Frame 2 Frame 3 Frame 4

ST-ResNet 16.75 19.56 21.46 22.91
VPN 17.42 20.50 22.58 24.26
PredNet 27.55 254.68 255.54 255.47
PredRNN 16.08 19.51 20.66 22.69

PredCNN 15.17 17.35 19.04 20.59

5.2 BikeNYC
Settings and hyperparameters BikeNYC is another tra-
jectory dataset taken from the New York City bicycle system
in 2014, 1st Apr. ∼ 30th Sept., containing riding durations,
starting and ending locations and times. The frames are col-
lected once an hour, shown as a grid map of 8×16. Following
the experimental settings in [Zhang et al., 2017], we divide
these consecutive frames into sequences and then split them
into a training set of 4, 148 items and a test set of 240 items.
Similar to our experiments on TaxiBJ, we transform the orig-
inal data values from [0, 267] to [−1, 1] and use the previous
4 frames to predict the next frame.

To avoid over-fitting, the number of RMBs in the encoder
and the decoder are reduced to 2 and 3. We keep each CMU
with 64 channels to remain PredCNN’s spatiotemporal mod-
eling capability. Different from TaxiBJ, we assess all of the
models with the image-level RMSE averaged on the number
of bike stations (N = 81) for this dataset, which is defined

as:
√
||Xt+1 − X̂t+1||2/N , where Xt+1 and X̂t+1 denote

the ground truth frame and the predicted frame respectively.

Table 4: Evaluations of different methods on BikeNYC.

Model RMSE MAE

ARIMA 10.07 -
SARIMA 10.56 -
VAR 9.92 -
DeepST [Zhang et al., 2016] 7.43 -
ST-ResNet [Zhang et al., 2017] 6.37 2.95
VPN [Kalchbrenner et al., 2017] 6.17 3.68
PredNet [Lotter et al., 2017] 7.45 3.71
PredRNN [Wang et al., 2017] 5.99 4.89

PredCNN (1 Conv2D / 1 Conv2D) 5.94 3.27
PredCNN (1 MU / 1 MU) 5.87 2.97
PredCNN (2 untying MUs / 1 MU) 5.77 2.89
PredCNN (CMU, non-overlapping) 5.65 2.87
PredCNN (CMU, overlapping) 5.61 2.82



Table 5: Performances of different methods on Moving MNIST.

Model MSE Sharpness Training Time Memory
Frame 1 Frame 2 Frame 4 Frame 8 (sec./iteration) (MB)

VPN [Kalchbrenner et al., 2017] 30.20 43.12 62.74 89.24 210.23 1.91 10603
ST-ResNet [Zhang et al., 2017] 43.97 71.39 118.51 153.83 170.18 0.74 1627

PredCNN (1 MU / 1 MU) 28.48 41.87 72.20 117.45 251.41 0.40 833
PredCNN (2 untying MUs / 1 MU) 28.25 41.37 71.75 115.66 251.09 0.42 858
PredCNN (CMU, non-overlapping) 27.89 41.03 70.50 115.07 251.74 0.40 845
PredCNN (CMU, overlapping) 26.36 39.24 67.99 114.97 249.91 0.61 1345

Results Table 4 indicates that our PredCNN model outper-
forms other approaches on the BikeNYC dataset, even earn-
ing a better result than state-of-the-art video prediction archi-
tectures such as VPN , PredNet and PredRNN. The RMSE
reduction from 5.99 (former best) to 5.61 can also clearly in-
dicates the effectiveness of our architecture. As an ablation
study, we decline RMSE from 5.94 to 5.87 by upgrading a
simple convolution (1 Conv2D / 1 Conv2D) to the multiplica-
tive unit (1 MU / 1 MU), to 5.77 by applying two consecutive
multiplicative unit to the left branch (2 untying MUs / 1 MU),
and to 5.61 by adding a shared weight multiplicative unit to
the left branch of the cascade multiplicative unit (CMU, over-
lapping). Even trained with the L2 loss, our PredCNN model
generates accurate frames with the lowest MAE value 2.82.

5.3 Moving MNIST
Settings and hyperparameters We follow the experiment
setting on Moving MNIST as [Wang et al., 2017]. Each se-
quence contains 20 consecutive frames, 10 for the input and
10 for the prediction, and each frame has 2 handwritten dig-
its bouncing inside a 64 × 64 grid of image. We use 10, 000
sequences for training and 5, 000 sequences for testing.

To verify our model for capturing longer sequence features,
for instance, predicting the following 10 frames recursively
with 10 real input frames on Moving MNIST, we use 4 RMBs
for encoder, 6 RMBs for decoder and CMUs with 64 channels
for PredCNN. We use Adam optimizer with a starting learn-
ing rate of 10−4, 8 video sequences per batch and the training
process stopped after approximately 200, 000 iterations.

Results We compare PredCNN with a RNN-based model,
VPN [Kalchbrenner et al., 2017], and a CNN-based model,
ST-ResNet [Zhang et al., 2017]. From Table 5 we can see that
PredCNN outperforms ST-ResNet in 10 frames prediction in
all metrics, indicating that our model can capture better tem-
poral dependencies across frames than previous convolution
models. Compared with VPN, our model yields lower error
in the first 3 frame prediction, higher average sharpness in 10
frames, as well as less training time and memory usage. Fig-
ure 4 shows the frame-wise prediction results of our model
and two competitors. It is clear that our model is favourable
for near-frame prediction, such as the first 3 frame prediction.

Table 5 shows the comparison of the two PredCNN struc-
tures. Compared with non-overlapping structure, overlapping
PredCNN has better performance as well as longer training
time and more memory usage. The overlapping structure may

become extremely deep especially when the input sequence is
long. We can trade off the two structures according to the se-
quence lengths for acceptable accuracy and training cost.

Input frames

Ground truth

VPN

PredCNN

ST-ResNet

Figure 4: Visualization of predictions on Moving MNIST. We use 10
real frames as input and predict the next 10 frames recursively. We
visualize the result of PredCNN using non-overlapping structure.

6 Conclusions and Future Work
This paper presents PredCNN, a convolutional architecture
for spatiotemporal predictive learning. Entirely composed of
convolutions, our model eases gradient propagation and re-
duces computation and memory burdens. Furthermore, we
introduce a cascade multiplicative unit that applies more op-
erations to previous frames, which explicitly captures the
temporal dependency. A hierarchical cascade structure is pro-
posed to capture the temporal dependencies between the next
frame and input frames by stacking cascade multiplicative
units. The proposed PredCNN model achieves the state-of-
the-art performance on the standard Moving MNIST dataset
and two challenging traffic crowd flow prediction datasets.

Video prediction is still an extremely challenging problem
due to the inherent uncertainty of the future. To deal with this
uncertainty, the adversarial training strategy [Goodfellow et
al., 2014] has been adopted to deep models. It remains un-
clear whether adversarial training would be useful to enhance
the quality of predictions on the gridded spatiotemporal data
like crowd flows. We believe integrating predictive networks
with adversarial training is a promising research direction.
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