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Abstract

Domain adaptation aims at knowledge transfer from a labeled source domain to
an unlabeled target domain. Current domain adaptation methods have made sub-
stantial advances in adapting discrete domains. However, this can be unrealistic in
real-world applications, where target data usually come in an online and continually
evolving manner, posing challenges to classic domain adaptation paradigm: (1)
Mainstream domain adaptation methods are tailored to stationary target domains,
and can fail in non-stationary environments. (2) Since the target data arrive online,
the model should also maintain competence on previous target data, i.e. adapt
without forgetting. To tackle these challenges, we propose a meta-adaptation frame-
work which enables the learner to adapt to continually evolving target domains
without forgetting. Our framework consists of two components: a meta-objective of
learning representations to adapt to evolving domains, enabling meta-learning for
unsupervised domain adaptation; and a meta-adapter for learning to adapt without
forgetting, reserving knowledge from previous target data. Experiments validate
the effectiveness our method on evolving domain adaptation benchmarks.

1 Introduction
Many machine learning applications require consistent performance across datasets of different
underlying data distributions. A plausible solution to this problem is domain adaptation, which
bridges the dataset shift and circumvents manual annotation for new tasks [26, 25]. By learning
features transferring well from a labeled source domain to an unlabeled target domain, domain
adaptation facilitates knowledge transfer and mitigates the harmful effect of shift in data distributions.

In this paper, we consider a more realistic setting of domain adaptation — adapting to evolving target
domains. Imagine a self-driving agent with a scene recognition system trained on scenes from a
stationary condition (the source domain). When deployed in real world, the environment can vary in
a continually evolving way, such as from day to night, and from shine to rain. Therefore, we hope
the agent gradually adapts to the environment shift and performs consistently well on scenes from
all environments (the evolving target domain). Another restriction we are confronted with is the
limited computational resources of the agent when deployed. Thus, we may learn representations in
the factory, and deploy only light-weight model to the cars when adapting to new target data in the
real world. Following the terms of meta-learning [4], we formulate this setting as evolving domain
adaptation (EDA): (1) we have access to adequate labeled examples from the source domain, and
part of the target unlabeled data from a target domain evolving over time in the meta-training phase,
(2) new target data of the meta-testing phase arrive sequentially online from the same evolving target
distribution and cannot be stored, and (3) after adapting to these new target data sequentially, we test
the model on all target data of meta-testing. An example of the EDA problem is provided in Figure 1.
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Figure 1: Problem Setup of Evolving Domain Adaptation (EDA): The source domain is labeled
and stationary, while the target domain is unlabeled and evolves with time. In the meta-training phase
we have access to part of the target data. In meta-testing, new target data come sequentially. We hope
the model performs consistently well on all target data in meta-testing after adaptation.

The evolving target domain poses obstruction to knowledge transfer. Mainstream domain adaptation
methods are tailored to adapting discrete source and target domains. [6, 19, 35, 31, 20, 40] learn
domain-invariant representations via domain adversarial training. This line of works rely on a domain
discriminator to distinguish two discrete domains, and cannot apply to evolving target domain directly.

Moreover, since the model adapts to new target data sequentially without storing the data, EDA faces
another challenge, catastrophic forgetting [23]. Current neural networks are prone to overwriting older
knowledge while adapting to new tasks [14]. In EDA, we hope the model can retain competence on
previous target data when adapting to new target data. Admittedly, a line of works have been proposed
to ameliorate catastrophic forgetting in supervised learning. Regularization methods [14, 17, 39]
prevent features with important knowledge from deviating too much on the new tasks, but calculating
“importance” relies on supervision from tasks. Replay methods [28, 33, 38, 30] need storing samples
from previous tasks or using large generative models [10], which violate the setting of EDA and are
unrealistic with the limited resources of online devices such as aforementioned self-driving agents.

Aiming to tackle both challenges, this paper proposes Evolution Adaptive Meta-Learning (EAML),
a meta-adaptation framework to adapt to continually evolving target domain without forgetting.
Recent advances in meta-learning [4, 5, 27] have been gaining momentum. Through an explicit
learning-to-learn paradigm, the meta-learner is able to learn transferable features for downstream
tasks [13, 29], which is critical in few-shot learning and transfer learning. Similarly, we can specify
a meta-training procedure of learning to adapt without forgetting explicitly. Concretely, our model
comprises two components: (1) a meta-objective to learn representations for adapting to continually
evolving target data, and (2) a meta-adapter for adapting to current target without forgetting the
previous target. The EAML framework is naturally suitable for EDA setting: In the meta-training
phase we obtain meta-representations and meta-adapters specified for evolving domain shift. When
adapting to new target data in the meta-testing phase, the meta-representations and meta-adapters
are fixed, with only light-weight adapters trained on small batches of data. We validate the proposed
approach on evolving domain adaptation benchmarks. Results demonstrate the effectiveness of the
proposed approach of addressing both evolving domain shift and catastrophic forgetting.

2 Evolving Domain Adaptation
Suppose we are provided with a source distribution P (x, y) and an evolving target distribution
Qt(x, y), t ∈ [0, 1]. For instance, if the target underlying distribution evolves with years, t will be
associated with a particular year. To quantify the continually evolving nature of Qt(x, y), typically
d(Qt1 , Qt2) > 0 for some distribution distance d. We further assume lim∆t→0 d(Qt, Qt+∆t) = 0 as
the continuity of the evolvement. See Figure 1 for this example. The goal of EDA is to learn a model
fθ parametrized by θ with consistently good performance over the continually evolving target Qt, i.e.

min
θ

Et∼U(0,1)E(x,y)∼Qt
L(fθ(x), y) = min

θ

∫ 1

0

E(x,y)∼Qt
L(fθ(x), y)dt. (1)

L is a loss function. For simplicity, we consider binary classification and 0-1 loss in this section. We
have access to ns source labeled data points S = {Xs,Ys} = {xs,i, ys,i}ns

i=1 sampled i.i.d. from the
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source distribution P . Target unlabeled data points come in small batches sequentially,

T = {Xt1 ,Xt2 · · ·Xtn},

forming a trajectory of evolving target. Here t1 < t2 < · · · < tn is an ordered sequence of n i.i.d.
samples from uniform distribution U(0, 1), and each Xti has nti i.i.d. samples from Qti . Note that
this problem fundamentally differs from classic domain adaptation. The underlying difference causes
significant degradation in performance if applying standard domain adaptation techniques to EDA.

To solve the EDA problem with target trajectories, we need the target domain to evolve steadily
to facilitate knowledge transfer. Recall the mathematical tools in analyzing generalization bound
of classic domain adaptation [1, 22]. Denote by dH∆H the H∆H-divergence, dH∆H(P,Qt) =
supθ,θ′ |EPL(fθ(x), fθ′(x))− EQt

L(fθ(x), fθ′(x))|, which quantifies the discrepancy between the
source and target distributions. The adaptability measuring the possibility of cross-domain learning is
λt = minθ [EPL(fθ(x), y) + EQtL(fθ(x), y)]. We extend this analysis to the EDA problem.
Theorem 1. We further assume dH∆H(Qt1 , Qt2) ≤ α|t1 − t2| holds with constant α for t1, t2 ≥ 0.
Then for any θ, with probability at least 1− δ over the sampling of target trajectory t1, t2 · · · tn,

EtEQtL(fθ(x), y) ≤ EPL(fθ(x), y) +
1

n

n∑
i=1

[dH∆H(P,Qti)] + Etλt +O
( α
δn

)
.

The role of α in EDA. Intuitively, α indicates the rate of evolvement of the target domain Qt. A
reasonably small α means Qt is evolving evenly, and neighboring target data share knowledge. n is
the length of target trajectory T . With small α and large n, i.e. if the target domain is evolving steadily
and the target trajectory is of sufficient length, we can solve the EDA problem by adapting source
and target trajectories. To this end, EDA methods should consider adapting to random samples of
target trajectories instead of adapting to the single target in order to generalize on evolving target data.
Furthermore, EDA methods should also learn representations to capture and harness the evolvement
of target domain, i.e. make α sufficiently small on learned representations.

Another critical issue of EDA is that the target data come online and cannot be stored in meta-testing.
Since neural networks are prone to overwriting previous knowledge in new tasks [23], adapting to
current target data inevitably results in forgetting knowledge on previous target. To address this
problem, we should design specific networks to mitigate catastrophic forgetting in EDA.

Motivated by the above insights, we propose Evolution Adaptive Meta-Learning (EAML), comprising
two components tailored to continually evolving domain shift and catastrophic forgetting respectively.

3 Evolution Adaptive Meta-Learning
Applying discrete domain adaptation methods directly to evolving target domain cannot solve EDA
properly. First, discrete DA neglects the evolvement of the target domain, which exerts significant
impact on EDA as pointed out by Theorem 1. Adapting to an intermediate target domain before
distant target domain performs better than adapting to them as a whole target [9]. Thus, we should
specify a training strategy to harness the evolvement of target data. Another factor lies in that the
target data come online sequentially, though we hope the model to perform well on all target data. To
retain competence on previous target data, we should overcome catastrophic forgetting.

Recent advances in meta-learning [4, 27] have enabled learning transferable representations adapting
to following tasks rapidly. Through an explicit learning-to-learn paradigm, the model can learn
representations specified for downstream tasks such as few-shot learning. Inspired by this, if we learn
to adapt explicitly, we can obtain a meta-representation specified for EDA. Similarly, we can also
learn a meta-adapter to tackle catastrophic forgetting through learning not to forget. See Figure 2(a)
for an overview of the proposed EAML framework.

3.1 Learning a Meta-Representation for Continually Evolving Target
Recall that Model-Agnostic Meta-Learning (MAML) [4] learns transferable features by minimizing
error on the support set in the inner loop and minimizing error on the query set in the outer loop. We
can learn a representation for adapting to evolving target similarly. Denote by hθ the representation
function parametrized by θ, gφ the adapter parametrized by φ, and cW the task classifier with
parameters W . Then the model can be expressed as the composite function fθ,φ,W = cW ◦ gφ ◦ hθ.
Taking the meta-training protocol [4], we sample source data S = {Xs,Ys} = {xs,i, ys,i}ns

i=1, a
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Figure 2: (a) Training procedure of EAML. In the inner loop, the adapter and the task classifier are
updated. In the outer loop, the meta-representation improves evolving adaptation, while the meta-
adapter overcomes forgetting. In meta-testing, both the meta-representation and the meta-adapter are
fixed, with only the light-weight adapter and task classifier trained on new target data. (b) Training
with the meta-adapter. We mimic the features of adapters across time. The meta-adapter learns
weights for feature matching in different dimensions to retain useful features and overcome forgetting.

target trajectory from the support set as Tspt = {Xt1 ,Xt2 · · ·Xtn}, and a target trajectory from the
query set as Tqry = {X′t1 ,X

′
t2 · · ·X

′
tn}. Note that each ti in the support and query set is identical.

Train adapter and classifier in the inner loop. In the inner loop, we train the adapter gφ and task
classifier cW to adapt to evolving target sequentially on the current representation fθ. Thus, the
representation fθ is fixed in the inner loop. After initializing g and c with φ0 and W0, we adapt them
to the target samples in Tspt sequentially with SGD: for i = 0, 1, · · · , n− 1,

(φ,W )i+1 ← (φ,W )i − ηin∇(φ,W ) [L(fθ,φi,Wi
(Xs),Ys) + d(fθ,φi,Wi

(Xs), fθ,φi,Wi
(Xti))] ,

(2)
where ηin is the learning rate of the inner loop. In classification setting, L is implemented as cross-
entropy loss. We use joint maximum mean discrepancy (joint MMD) [21] as domain discrepancy d,
though other discrepancy measures can also fit in our framework.

Train the meta-representation in the outer loop. In the outer loop, we require the representation to
make the adaptation in the inner loop more effective. A direct approach is to update the representation
fθ to minimize the EDA loss on the query set following Equation (1). However, we have no access to
target labels. Inspired by Theorem 1, we replace the original EDA loss with its upper bound, and
update θ to control the upper bound. Note that we have shown the critical role of the evolving rate α in
EDA problem. In order to learn a representation tailored to EDA, we should take α into consideration.
We use maxi d(fθ,φn,Wn

(X′ti−1
), fθ,φn,Wn

(X′ti)) as an approximation of α, and update θ by

θ ← θ − ηout∇θL[(fθ,φn,Wn
(Xs),Ys) +

1

n

n∑
i=1

d(fθ,φn,Wn
(Xs), fθ,φn,Wn

(X′ti))

+ max
i
d(fθ,φn,Wn

(X′ti−1
), fθ,φn,Wn

(X′ti))],

(3)

where ηout denotes the learning rate of the outer loop.

3.2 Learning a Meta-Adapter to Overcome Forgetting
We have obtained a meta-representation for adapting to continually evolving target. Nonetheless,
when adapting to new trajectory of target Ttest in the meta-testing, the representation fθ is fixed, with
only gφ and cW adapting to target data online. To this end, we should also design the adapter gφ to
avoid overwriting knowledge learned by the adapter on the previous target. This can be achieved by
introducing a meta-adapter g′φ′ to the original adapter gφ.

Mimicking intermediate features with meta-adapter in the inner loop. If an adapter is well-
trained on a previous target, its intermediate features contain useful knowledge for that target data.
Thus, matching the intermediate features when adapting to new target helps overcome forgetting of
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Algorithm 1 Meta-Training of Evolution Adaptive Meta-Learning (EAML)
1: Input: the source domain P and the evolving target domain Qt.
2: Output: learned representations fθ and meta-adapter g′φ′ .
3: for t = 0 to MaxIter do
4: Initialize adapter gφ and task classifier cW ; Sample source data S = {Xs,Ys} from P .
5: Sample target trajectories Tspt = {Xt1 ,Xt2 · · ·Xtn} and Tqry = {X′t1 ,X

′
t2 · · ·X

′
tn} from Qt.

6: for i = 0 to n do
7: In the inner loop, update the classifier cW and the adapter gφ:

(φ,W )i+1 = (φ,W )i − ηin∇(φ,W )[L(fθ,φi,Wi
(Xs),Ys)

+ d(fθ,φi,Wi
(Xs), fθ,φi,Wi

(Xti)) + λLm(φ′, φi, φi−1)].

8: end for
9: In the outer loop, update the meta-representation fθ and the meta-adapter g′φ′ :

(θ, φ′)← (θ, φ′)− ηout∇θ,φ′L[(fθ,φn,Wn(Xs),Ys) +
1

n

n∑
i=1

d(fθ,φn,Wn(Xs), fθ,φn,Wn(X′ti))

+ max
i
d(fθ,φn,Wn

(X′ti−1
), fθ,φn,Wn

(X′ti))].

10: end for

the old ones. Yet not all the intermediate features are critical to the previous target. A more plausible
solution is learning to assign different weights for different features.

Suppose the l-th intermediate layer of the adapter is gl,φl
: Rd → Rm parametrized by φl, gl,φprev

l
is

l-th layer of the previous target, and the features in a mini-batch are x ∈ Rn×d. Then the weighted
feature matching loss is

∑n
j=1 w

>
j ‖gl,φl

(xj)− gl,φprev
l

(xj)‖, where wj ∈ Rm is the weight of sample
xj . To facilitate knowledge retaining, we introduce the meta-adapter g′l,φ′l , wj = g′l,φ′l

(xj). Thus, the
total loss is the sum of the weighted feature matching loss in each layer,

Lm(φ′, φ, φprev) =
∑
l

∑
j

g′l,φ′l
(xj)

>‖gl,φl
(xj)− gl,φprev

l
(xj)‖.

We describe the weighted feature matching with the meta-adapter in Figure 2(b). In the inner loop,
we learn the adapter gφ and the classifier cW with the weight generated by g′φ′ . Concretely, we add
the feature matching loss Lm to the original loss in Equation (2), and fix the meta-adapter g′φ′ .

Learning the meta-adapter in the outer loop. In the outer loop, we need to update the meta-adapter
to make the weighted feature mimicking preserve more knowledge on previous target data. Similar to
the strategy of learning the meta-representations, we use the same loss function as Equation (3), but
we calculate the gradient w.r.t. both fθ and g′φ′ .

We sum up the complete training procedure of the proposed method in Algorithm 1 and Figure 2(a). In
the inner loop, the adapter gφ and task classifier cW are trained to adapt to target data sequentially. In
the outer loop, both meta-representation fθ and meta-adapter g′φ′ are updated to facilitate adaptation
to evolving target without forgetting. During meta-training, we learn both meta-representation and
meta-adapter offline. When exposed to new target trajectory in meta-testing, fθ and g′φ′ are fixed and
only gφ and cW are updated, resulting in a light-weight model when deployed to scenarios short of
computation resources such as self-driving agents.

4 Experiments
In this section, we evaluate our method with evolving domain datasets in different scenarios. Details
on datasets and implementation are deferred to appendix2.

4.1 Datasets
Rotated MNIST: This dataset consists of MNIST digits of various rotations. This is similar to the
protocol of [3], but they only consider discrete rotations and each domain has 60000 training samples.

2Codes are available at https://github.com/Liuhong99/EAML.
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Table 1: Classification Accuracy (%) on rotated MNIST dataset.

Method 120◦ 126◦ 132◦ 138◦ 144◦ 150◦ 156◦ 162◦ 168◦ 174◦ Avg.

Source Only 17.60 19.29 22.50 24.14 26.49 29.48 31.06 32.26 33.73 33.25 26.98
DANN [6] 18.92 21.65 24.32 27.63 29.76 32.01 33.92 36.23 36.68 36.93 29.81
JAN [21] 20.37 22.53 25.15 27.53 29.89 31.40 32.99 33.85 35.77 37.13 29.66
JAN Merge 20.20 21.71 25.75 29.16 33.27 37.19 40.04 40.39 39.67 38.71 32.60
CDAN Merge [20] 20.50 23.64 25.73 29.65 31.44 37.05 40.17 40.02 41.16 39.28 32.87
MAML [4] 22.75 25.11 28.90 30.40 32.62 34.56 35.14 36.55 37.31 38.30 32.16
CMA [11] 21.82 23.65 26.48 29.48 32.05 34.99 35.08 36.34 38.33 39.25 31.75
DANN+EWC [14] 20.39 24.19 28.50 30.10 32.48 35.75 36.23 38.47 38.63 38.05 32.27

EAML (rep) 20.91 23.91 26.23 29.74 33.37 36.15 38.93 41.09 42.05 43.30 33.57
EAML (ada) 22.34 26.07 30.83 31.20 32.25 36.36 37.69 38.75 38.31 39.13 33.19
EAML (full) 24.69 27.48 30.16 32.79 34.88 37.35 39.25 40.96 42.45 42.27 35.23

Replay Oracle 24.35 26.21 30.33 31.89 33.02 35.87 37.98 39.66 41.40 42.21 34.28

In our modified protocol, the rotation of target domain is continuous 0− 180◦. Images with rotation
0◦ belong to the labeled source domain. For each rotation, we have access to 100 samples of images.
In meta-training, we use rotation 0−60◦. We randomly sample a trajectory T = {Xt1 ,Xt2 · · ·Xt10},
ti ∈ [0, 60]◦, formulating an EDA problem. In meta-testing, we test the model’s performance online
with trajectory T = {X120◦ ,X126◦ · · ·X174◦}. Note that in meta-testing, we have only 100 training
samples for each rotation, making this task very challenging.

Evolving Vehicles: This dataset contains sedans and trucks from the 1970s to 2010s (See Figure
1), which involves more complex continuous domain shift compared to rotated MNIST. For each
decade, we collect 100 sedans and 100 trucks. Images from 1970 to 1975 are used as the labeled
source domain. The continually evolving target domain contains vehicles from 1980 to 2020. In meta-
training, We randomly sample a trajectory T = {Xt1 ,Xt2 · · ·Xt6} from 1980 to 1995, formulating
an EDA problem. In meta-testing, we adapt to trajectory T = {X2000,X2005 · · ·X2015} sequentially
online and test on all images in 2000 ∼ 2020.

Caltran: This is a real-world dataset of images captured by a camera at an intersection over time.
It contains images captured at an interval of 3 minutes over two weeks, formulating a challenging
continually evolving target, since it includes changes in time, illumination, weather, etc. [11] evaluated
the performance on this dataset, yet they tested the model online, without accounting for catastrophic
forgetting. We modify their original setup as follows: Images from the first 5 hours (100 in total) are
used as the labeled source domain. The continually evolving target domain contains images in the
following two weeks. In meta-training, We sample a trajectory T = {Xt1 ,Xt2 · · ·Xt100} in the first
week. In meta-testing, we adapt a trajectory of length 100 drawn randomly from the images in the
second week and test the performance on all images from the second week.

4.2 Implementation
We implement our method on PyTorch. We adopt cross-entropy loss for classification tasks. For
the domain discrepancy, we use joint MMD [21]. Suppose the feature representations and the logits
of the source domain and the target domain are {xpi , ŷ

p
i }
np

i=1 and {xqi , ŷ
q
i }
nq

i=1, respectively. We are
provided with the kernel function kx(·, ·) and ky(·, ·) for the feature and output spaces. Denote
by k((x1, y1), (x2, y2)) = kx(x1, x2) · ky(y1, y2) the joint kernel function, then the joint MMD is
computed as the squared distance between empirical kernel means,

d(P,Q) = Ek((xp, ŷp), (xp, ŷp)) + Ek((xq, ŷq), (xq, ŷq))− 2Ek((xp, ŷp), (xq, ŷq)).

We use `2 loss for feature matching. The importance of the feature matching loss in the total loss is
set by cross-validation. We use SGD with 0.9 momentum and 5× 10−4 weight decay. The learning
rates of the inner loop and the outer loop are set to 0.01 and 0.001 respectively. For rotated MNIST,
we use LeNet [16] as the backbone. The meta-representation fθ includes two convolutional layers.
The adapter is a two-layer fully-connected network with ReLU activations. To avoid the impact of
image pre-processing, we only normalize the input to zero-mean and uni-variance without random
rotation or flip. For Evolving Vehicles and Caltran, we use a six-layer convolutional network as the
backbone. The meta-representation fθ includes four convolutional layers, the same as the conv-4
network in [4]. The adapter is a two-layer convolutional network with ReLU activations. We carry
out each experiment 3 times and report the mean accuracy and standard deviation.
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(a) Each target on Evolving Vehicles (b) First target on Evolving Vehicles (c) All targets on Caltran

Figure 3: Results on Evolving Vehicles and Caltran. (a) Accuracy of each target domain after adapting to
them sequentially online on Evolving Vehicles. (b) Accuracy of the first target domain after adapting to following
target data on Evolving Vehicles. (c) Accuracy of all target data in meta-testing on Caltran.

4.3 Baselines
Source Only. Simply train on the source domain and test on the target without adaptation.

DANN [6] and JAN [21]. These two represent classic domain adaptation methods for discrete target
domains. We apply them to the EDA problem as follows. We first train the model with labeled source
dataset and all the target data available offline in meta-training. Then we adapt both methods to the
evolving target data sequentially in meta-testing and test their performance.

JAN Merge and CDAN Merge. CDAN [20] is a strong classic domain adaptation baseline. We
merge the continually evolving target available in both meta-training and meta-testing as a single
target and train JAN or CDAN on it. We test its performance on the target data of meta-testing. Note
that merging the target data and training the model on it offline actually violates the setting of EDA,
and both methods can take benefit from such impractical violations.

MAML [4]. A straightforward application of MAML is learning an initialization specialized for
EDA. Similar to the protocol of EAML as stated in Section 3.1, we update the whole network in inner
loop and outer loop, instead of learning a meta-representation.

CMA [11]. CMA learns continual manifold for evolving target domain, but does not account for
catastrophic forgetting. We use LeNet and conv-4 features as its input.

DANN+EWC. EWC [14] is a popular method for continual or incremental learning. We combine
EWC regularization with DANN and apply to the EDA problem.

4.4 Results
Results on Rotated MNIST are provided in Table 1. Classic domain adaptation methods are not
suitable for the evolving target domains. Note that even if we merge the target data as one domain
and adapt to it offline (JAN-Merge and CDAN-Merge), the model still cannot capture the structure of
evolving target domain. EAML with only meta-representation (EAML-rep) improves performance
on all target data and especially the last-adapted target data, since it learns representations specified
for evolving target which harness knowledge on the previous target data. The meta-adapter further
helps preserve the knowledge learned on early target domains and mitigate forgetting.

We perform ablation study on Evolving Vehicles in Figure 3, validating the models’ performance
on more complex evolving domains. We test the accuracy on all target data after adapting to a
target trajectory in Figure 3(a). EAML-full outperforms all the baselines by a large margin. In
Figure 3(b), we show the change of accuracy on the first target domain during the adaptation to the
following domains. DANN forgets the knowledge on the previous target data. Note that as EAML-rep
adapts to the following target data, the accuracy on the previous target first rises, validating that the
meta-representations harness knowledge from previous target when adapting to the current target.
EAML-full further incorporates the meta-adapter to overcome catastrophic forgetting.

In Figure 3(c), we depict the accuracy of all target data in meta-testing after adapting to the target
trajectories on Caltran. Results indicate that when applied to real-world data, the proposed method
still learns effective meta-representations for adapting to evolving target domains.

4.5 Analysis
Meta-representation visualization. We use t-SNE [37] to visualize the representations learned by
different methods on Caltran in Figure 4. The target data evolve as the color changes from dark to
light. Training the model only on the source domain results in poor alignment inside the evolving
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(a) Source Only (b) JAN Merge (c) EAML

Figure 4: T-SNE on Caltran. The target features evolve as the color changes from dark to light.
Training on only the source domain and JAN Merge do not capture the evolvement of target data.
EAML learns meta-representation to evolve the target data smoothly and enable continual transfer.

(a) EAML (b) JAN Merge

Figure 5: A-distance along evolving target domains. We approximate α in Theorem 1 with A-
distance between neighboring target data along the evolving target domains on Caltran dataset. EAML
achieves smaller maximum and mean values of A-distance than JAN Merge, indicating smaller α and
smoother evolving representations for the evolving target domain.

target domains as shown in Figure 4(a). Merging the evolving target and adapting to it offline (see
Figure 4(b)) bridges the domain shift to some extent, but it does not capture and harness the smooth
evolvement of the evolving target domains for knowledge transfer. Figure 4(c) demonstrates the
meta-representations of EAML. As expected, EAML captures the evolvement of the target domain
and learns a representation that changes smoothly with the evolvement.

A-distance along evolving target domains. We further assess the representations by considering α
in Theorem 1. We approximate α with the proxy A-distance [1] between neighboring target data:
dA(Qt, Qt+0.01) = 2(1 − 2ε), where ε is the generalization error of training a linear classifier to
discriminate samples in Qt and Qt+0.01. We plot the changing of dA with t ∈ [0, 0.99] in Figure 5.
The meta-representation of EAML has much smaller dA along the evolving target than representations
learned by JAN Merge, indicating smaller α and better generalization for EDA.

Figure 6: Accuracy on Caltran
with various λ and ηφ′ .

Balancing domain adaptation and learning without forgetting.
The balance of adaptation and avoiding forgetting relies on a hyper-
parameter λ as in line 7 of Algorithm 1 and the learning rate of
meta-adapters ηφ′ . Intuitively, larger λ and ηφ′ indicate larger penalty
on forgetting. We visualize performance on Caltran w.r.t λ and ηφ′ in
Figure 6. Results indicate that EAML is not sensitive to those hyper-
parameters. The balance between domain adaptation and learning
without forgetting is easily achievable.

Comparison with DANN+Replay. Generative replay is a powerful
method of supervised continual learning. We apply it to evolving domain adaptation on Rotated
MNIST as a strong baseline. We train a CycleGAN [41] to transfer images from the source domain
to previous target data. Then we add previous target data generated by the CycleGAN when DANN
adapts to current target data to mitigate forgetting. Note that this method violates the EDA setting:
we wish to deploy light-weight model in meta-testing, yet GANs require heavy computation. We
show the performance of DANN+Replay in the last line of Table 1. Although EAML uses only
light-weight adapters in meta-testing, it still outperforms DANN+Replay.
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Table 2: Comparison of different settings of continual of evolving domain adaptation.

Setting Online Evolvement Small batch Forgetting

CMA [11] and IEDA [2] X X X ×
Bobu et al. [3] × × × X
Lao et al. [15] X × × X

EDA X X X X

5 Additional Related Work
Classic Domain Adaptation. Classic domain adaptation learns a representation where the domain
discrepancy is minimized. [24, 7, 8] map the source and target domains into a new feature space. [19,
36] incorporate the maximum mean discrepancy (MMD). DANN [6] trains a domain discriminator
to distinguish discrete source and target while the features are learned adversarially to confuse the
discriminator. [35, 20, 34] further improve DANN and achieve significant performance gain. MCD
[31] uses an alternative approach: maximizing the disagreement of two classifiers on the target
domain. [18, 32, 12] enable pixel-level adaptation with generative architectures. These methods are
tailored to discrete source and target domains and cannot be applied to EDA directly.

Continuous Domain Adaptation. The problem of continuous domain adaptation is related to EDA
but with a different context and focus. [3, 15] learn discrete target tasks online, but they do not address
the evolving nature of target domains to harness it in knowledge transfer. [11, 2] focus on continually
shifting target domains, but they test the model online and did not address the catastrophic forgetting.
In this paper, we tackle a more challenging and realistic EDA scenario, addressing both challenges of
target domain evolvement and catastrophic forgetting. A comparison of several different settings of
continual or evolving domain adaptation is provided in Table 2.

6 Conclusion
In this paper, we address the problem of adapting to evolving domains. We propose a meta-adaptation
framework to solve evolving domain adaptation (EDA) efficiently. By learning a meta-representation
specified for EDA, we are able to capture and harness the smooth evolvement of the target domain in
knowledge transfer. We further overcome the catastrophic forgetting by learning a meta-adapter for
weighted feature mimicking. Experiments validate the efficacy of our method on EDA benchmarks.

This paper also opens up future questions for evolving domain adaptation. How can we capture
the intrinsic structure of evolving data more efficiently? Could we extent the EDA framework to
heterogeneous transfer learning? Furthermore, we hope our work inspires further studies to pursue
real-world domain adaptation applications.

Broader Impact
The propose method may open up the applications of domain adaptation in more real-world scenarios.
Without access to target labels, it may help protect privacy. As a method of mitigating the negative
effect of dataset shift, EAML can also be applied to undo dataset bias in fair machine learning.
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