
HashNet: Deep Learning to Hash by Continuation∗

Zhangjie Cao†, Mingsheng Long†, Jianmin Wang†, and Philip S. Yu†‡

†KLiss, MOE; NEL-BDS; TNList; School of Software, Tsinghua University, China
‡University of Illinois at Chicago, IL, USA

caozhangjie14@gmail.com {mingsheng,jimwang}@tsinghua.edu.cn psyu@uic.edu

Abstract

Learning to hash has been widely applied to approxi-
mate nearest neighbor search for large-scale multimedia re-
trieval, due to its computation efficiency and retrieval qual-
ity. Deep learning to hash, which improves retrieval quality
by end-to-end representation learning and hash encoding,
has received increasing attention recently. Subject to the ill-
posed gradient difficulty in the optimization with sign acti-
vations, existing deep learning to hash methods need to first
learn continuous representations and then generate binary
hash codes in a separated binarization step, which suffer
from substantial loss of retrieval quality. This work presents
HashNet, a novel deep architecture for deep learning to
hash by continuation method with convergence guarantees,
which learns exactly binary hash codes from imbalanced
similarity data. The key idea is to attack the ill-posed gra-
dient problem in optimizing deep networks with non-smooth
binary activations by continuation method, in which we be-
gin from learning an easier network with smoothed activa-
tion function and let it evolve during the training, until it
eventually goes back to being the original, difficult to opti-
mize, deep network with the sign activation function. Com-
prehensive empirical evidence shows that HashNet can gen-
erate exactly binary hash codes and yield state-of-the-art
multimedia retrieval performance on standard benchmarks.

1. Introduction
In the big data era, large-scale and high-dimensional me-

dia data has been pervasive in search engines and social net-
works. To guarantee retrieval quality and computation effi-
ciency, approximate nearest neighbors (ANN) search has at-
tracted increasing attention. Parallel to the traditional index-
ing methods [21], another advantageous solution is hash-
ing methods [38], which transform high-dimensional media
data into compact binary codes and generate similar binary
codes for similar data items. In this paper, we will focus
on learning to hash methods [38] that build data-dependent

∗Corresponding author: M. Long (mingsheng@tsinghua.edu.cn).

hash encoding schemes for efficient image retrieval, which
have shown better performance than data-independent hash-
ing methods, e.g. Locality-Sensitive Hashing (LSH) [10].

Many learning to hash methods have been proposed to
enable efficient ANN search by Hamming ranking of com-
pact binary hash codes [19, 12, 30, 9, 25, 37, 27, 11, 41, 42].
Recently, deep learning to hash methods [40, 20, 34, 8, 44,
22, 24] have shown that end-to-end learning of feature rep-
resentation and hash coding can be more effective using
deep neural networks [18, 2], which can naturally encode
any nonlinear hash functions. These deep learning to hash
methods have shown state-of-the-art performance on many
benchmarks. In particular, it proves crucial to jointly learn
similarity-preserving representations and control quantiza-
tion error of binarizing continuous representations to binary
codes [44, 22, 43, 24]. However, a key disadvantage of these
deep learning to hash methods is that they need to first learn
continuous deep representations, which are binarized into
hash codes in a separated post-step of sign thresholding. By
continuous relaxation, i.e. solving the discrete optimization
of hash codes with continuous optimization, all these meth-
ods essentially solve an optimization problem that deviates
significantly from the hashing objective as they cannot learn
exactly binary hash codes in their optimization procedure.
Hence, existing deep hashing methods may fail to generate
compact binary hash codes for efficient similarity retrieval.

There are two key challenges to enabling deep learning
to hash truly end-to-end. First, converting deep representa-
tions, which are continuous in nature, to exactly binary hash
codes, we need to adopt the sign function h = sgn (z) as
activation function when generating binary hash codes us-
ing similarity-preserving learning in deep neural networks.
However, the gradient of the sign function is zero for all
nonzero inputs, which will make standard back-propagation
infeasible. This is known as the ill-posed gradient problem,
which is the key difficulty in training deep neural networks
via back-propagation [14]. Second, the similarity informa-
tion is usually very sparse in real retrieval systems, i.e., the
number of similar pairs is much smaller than the number
of dissimilar pairs. This will result in the data imbalance

1

problem, making similarity-preserving learning ineffective.
Optimizing deep networks with sign activation remains an
open problem and a key challenge for deep learning to hash.

This work presents HashNet, a new architecture for deep
learning to hash by continuation with convergence guaran-
tees, which addresses the ill-posed gradient and data imbal-
ance problems in an end-to-end framework of deep feature
learning and binary hash encoding. Specifically, we attack
the ill-posed gradient problem in the non-convex optimiza-
tion of the deep networks with non-smooth sign activation
by the continuation methods [1], which address a complex
optimization problem by smoothing the original function,
turning it into a different problem that is easier to optimize.
By gradually reducing the amount of smoothing during the
training, it results in a sequence of optimization problems
converging to the original optimization problem. A novel
weighted pairwise cross-entropy loss function is designed
for similarity-preserving learning from imbalanced similar-
ity relationships. Comprehensive experiments testify that
HashNet can generate exactly binary hash codes and yield
state-of-the-art retrieval performance on standard datasets.

2. Related Work
Existing learning to hash methods can be organized into

two categories: unsupervised hashing and supervised hash-
ing. We refer readers to [38] for a comprehensive survey.

Unsupervised hashing methods learn hash functions that
encode data points to binary codes by training from unla-
beled data. Typical learning criteria include reconstruction
error minimization [33, 12, 16] and graph learning[39, 26].
While unsupervised methods are more general and can be
trained without semantic labels or relevance information,
they are subject to the semantic gap dilemma [35] that high-
level semantic description of an object differs from low-
level feature descriptors. Supervised methods can incorpo-
rate semantic labels or relevance information to mitigate the
semantic gap and improve the hashing quality significantly.
Typical supervised methods include Binary Reconstruction
Embedding (BRE) [19], Minimal Loss Hashing (MLH) [30]
and Hamming Distance Metric Learning [31]. Supervised
Hashing with Kernels (KSH) [25] generates hash codes by
minimizing the Hamming distances across similar pairs and
maximizing the Hamming distances across dissimilar pairs.

As deep convolutional neural network (CNN) [18, 13]
yield breakthrough performance on many computer vision
tasks, deep learning to hash has attracted attention recently.
CNNH [40] adopts a two-stage strategy in which the first
stage learns hash codes and the second stage learns a deep
network to map input images to the hash codes. DNNH [20]
improved the two-stage CNNH with a simultaneous feature
learning and hash coding pipeline such that representations
and hash codes can be optimized in a joint learning process.
DHN [44] further improves DNNH by a cross-entropy loss

and a quantization loss which preserve the pairwise similar-
ity and control the quantization error simultaneously. DHN
obtains state-of-the-art performance on several benchmarks.

However, existing deep learning to hash methods only
learn continuous codes g and need a binarization post-step
to generate binary codes h. By continuous relaxation, these
methods essentially solve an optimization problem L(g)
that deviates significantly from the hashing objective L(h),
because they cannot keep the codes exactly binary after con-
vergence. Denote by Q(g,h) the quantization error func-
tion by binarizing continuous codes g into binary codes h.
Prior methods control the quantization error in two ways:
(a) minL(g) + Q(g,h) through continuous optimization
[44, 22]; (b) minL(h)+Q(g,h) through discrete optimiza-
tion on L(h) but continuous optimization on Q(g,h) (the
continuous optimization is used for out-of-sample extension
as discrete optimization cannot be extended to the test data)
[24]. However, since Q(g,h) cannot be minimized to zero,
there is a large gap between continuous codes and binary
codes. To directly optimize minL(h), we must adopt sign
as the activation function within deep networks, which en-
ables generation of exactly binary codes but introduces the
ill-posed gradient problem. This work is the first effort to
learn sign-activated deep networks by continuation method,
which can directly optimize L(h) for deep learning to hash.

3. HashNet
In similarity retrieval systems, we are given a training set

of N points {xi}Ni=1, each represented by a D-dimensional
feature vector xi ∈ RD. Some pairs of points xi and xj are
provided with similarity labels sij , where sij = 1 if xi and
xj are similar while sij = 0 if xi and xj are dissimilar. The
goal of deep learning to hash is to learn nonlinear hash func-
tion f : x 7→ h ∈ {−1, 1}K from input space RD to Ham-
ming space {−1, 1}K using deep neural networks, which
encodes each point x into compact K-bit binary hash code
h = f(x) such that the similarity information between the
given pairs S can be preserved in the compact hash codes.
In supervised hashing, the similarity set S = {sij} can be
constructed from semantic labels of data points or relevance
feedback from click-through data in real retrieval systems.

To address the data imbalance and ill-posed gradient
problems in an end-to-end learning framework, this paper
presents HashNet, a novel architecture for deep learning to
hash by continuation, shown in Figure 1. The architecture
accepts pairwise input images {(xi,xj , sij)} and processes
them through an end-to-end pipeline of deep representation
learning and binary hash coding: (1) a convolutional net-
work (CNN) for learning deep representation of each image
xi, (2) a fully-connected hash layer (fch) for transforming
the deep representation into K-dimensional representation
zi ∈ RK , (3) a sign activation function h = sgn (z) for
binarizing the K-dimensional representation zi into K-bit

+1

-1
x

y

0

1

input CNNs fch sgn
similarity

label

weighted
cross-

entropy
loss

-2 -1 0 1 2

-1

1

h=tanh(βbz)
h=tanh(βgz)

h=tanh(βoz)

z

h

Figure 1. (left) The proposed HashNet for deep learning to hash by continuation, which is comprised of four key components: (1) Standard
convolutional neural network (CNN), e.g. AlexNet and ResNet, for learning deep image representations, (2) a fully-connected hash layer
(fch) for transforming the deep representation into K-dimensional representation, (3) a sign activation function (sgn) for binarizing the
K-dimensional representation into K-bit binary hash code, and (4) a novel weighted cross-entropy loss for similarity-preserving learning
from sparse data. (right) Plot of smoothed responses of the sign function h = sgn (z): Red is the sign function, and blue, green and orange
show functions h = tanh (βz) with bandwidths βb < βg < βo. The key property is limβ→∞ tanh (βz) = sgn (z). Best viewed in color.

binary hash code hi ∈ {−1, 1}K , and (4) a novel weighted
cross-entropy loss for similarity-preserving learning from
imbalanced data. We attack the ill-posed gradient problem
of the non-smooth activation function h = sgn (z) by con-
tinuation, which starts with a smoothed activation function
y = tanh (βx) and becomes more non-smooth by increas-
ing β as the training proceeds, until eventually goes back to
the original, difficult to optimize, sign activation function.

3.1. Model Formulation

To perform deep learning to hash from imbalanced data,
we jointly preserve similarity information of pairwise im-
ages and generate binary hash codes by weighted maximum
likelihood [6]. For a pair of binary hash codes hi and hj ,
there exists a nice relationship between their Hamming dis-
tance distH(·, ·) and inner product 〈·, ·〉: distH (hi,hj) =
1
2 (K − 〈hi,hj〉). Hence, the Hamming distance and inner
product can be used interchangeably for binary hash codes,
and we adopt inner product to quantify pairwise similarity.
Given the set of pairwise similarity labels S = {sij}, the
Weighted Maximum Likelihood (WML) estimation of the
hash codes H = [h1, . . . ,hN] for all N training points is

logP (S|H) =
∑
sij∈S

wij logP (sij |hi,hj), (1)

where P (S|H) is the weighted likelihood function, andwij
is the weight for each training pair (xi,xj , sij), which is
used to tackle the data imbalance problem by weighting the
training pairs according to the importance of misclassifying
that pair [6]. Since each similarity label in S can only be
sij = 1 (similar) or sij = 0 (dissimilar), to account for the
data imbalance between similar and dissimilar pairs, we set

wij = cij ·

{
|S| / |S1| , sij = 1

|S| / |S0| , sij = 0
(2)

where S1 = {sij ∈ S : sij = 1} is the set of similar pairs
and S0 = {sij ∈ S : sij = 0} is the set of dissimilar pairs;

cij is continuous similarity, i.e. cij =
yi∩yj

yi∪yj
if labels yi

and yj of xi and xj are given, cij = 1 if only sij is given.
For each pair, P (sij |hi,hj) is the conditional probability
of similarity label sij given a pair of hash codes hi and hj ,
which can be naturally defined as pairwise logistic function,

P (sij |hi,hj) =

{
σ (〈hi,hj〉) , sij = 1

1− σ (〈hi,hj〉) , sij = 0

= σ(〈hi,hj〉)sij (1− σ (〈hi,hj〉))1−sij

(3)
where σ (x) = 1/(1 + e−αx) is the adaptive sigmoid func-
tion with hyper-parameter α to control its bandwidth. Note
that the sigmoid function with larger α will have larger sat-
uration zone where its gradient is zero. To perform more ef-
fective back-propagation, we usually require α < 1, which
is more effective than the typical setting of α = 1. Similar
to logistic regression, we can see in pairwise logistic regres-
sion that the smaller the Hamming distance distH (hi,hj)
is, the larger the inner product 〈hi,hj〉 as well as the con-
ditional probability P (1|hi,hj) will be, implying that pair
hi and hj should be classified as similar; otherwise, the
larger the conditional probability P (0|hi,hj) will be, im-
plying that pair hi and hj should be classified as dissimilar.
Hence, Equation (3) is a reasonable extension of the logistic
regression classifier to the pairwise classification scenario,
which is optimal for binary similarity labels sij ∈ {0, 1}.

By taking Equation (3) into WML estimation in Equa-
tion (1), we achieve the optimization problem of HashNet,

min
Θ

∑
sij∈S

wij (log (1 + exp (α 〈hi,hj〉))− αsij 〈hi,hj〉),

(4)
where Θ denotes the set of all parameters in deep networks.
Note that, HashNet directly uses the sign activation function
hi = sgn (zi) which converts the K-dimensional represen-
tation to exactly binary hash codes, as shown in Figure 1.
By optimizing the WML estimation in Equation (4), we can

enable deep learning to hash from imbalanced data under
a statistically optimal framework. It is noteworthy that our
work is the first attempt that extends the WML estimation
from pointwise scenario to pairwise scenario. The HashNet
can jointly preserve similarity information of pairwise im-
ages and generate exactly binary hash codes. Different from
HashNet, previous deep-hashing methods need to first learn
continuous embeddings, which are binarized in a separated
step using the sign function. This will result in substantial
quantization errors and significant losses of retrieval quality.

3.2. Learning by Continuation

HashNet learns exactly binary hash codes by converting
the K-dimensional representation z of the hash layer fch,
which is continuous in nature, to binary hash code h taking
values of either +1 or −1. This binarization process can
only be performed by taking the sign function h = sgn (z)
as activation function on top of hash layer fch in HashNet,

h = sgn (z) =

{
+1, if z > 0

−1, otherwise
(5)

Unfortunately, as the sign function is non-smooth and non-
convex, its gradient is zero for all nonzero inputs, and is ill-
defined at zero, which makes the standard back-propagation
infeasible for training deep networks. This is known as the
vanishing gradient problem, which has been a key difficulty
in training deep neural networks via back-propagation [14].

Many optimization methods have been proposed to cir-
cumvent the vanishing gradient problem and enable effec-
tive network training with back-propagation, including un-
supervised pre-training [14, 3], dropout [36], batch normal-
ization [15], and deep residual learning [13]. In particular,
Rectifier Linear Unit (ReLU) [29] activation function makes
deep networks much easier to train and enables end-to-end
learning algorithms. However, the sign activation function
is so ill-defined that all the above optimization methods will
fail. A very recent work, BinaryNet [5], focuses on training
deep networks with activations constrained to +1 or −1.
However, the training algorithm may be hard to converge as
the feed-forward pass uses the sign activation (sgn) but the
back-propagation pass uses a hard tanh (Htanh) activation.
Optimizing deep networks with sign activation remains an
open problem and a key challenge for deep learning to hash.

Algorithm 1: Optimizing HashNet by Continuation
Input: A sequence 1 = β0 < β1 < . . . < βm =∞
for stage t = 0 to m do

Train HashNet (4) with tanh(βtz) as activation
Set converged HashNet as next stage initialization

end
Output: HashNet with sgn(z) as activation, βm →∞

This paper attacks the problem of non-convex optimiza-
tion of deep networks with non-smooth sign activation by
starting with a smoothed objective function which becomes
more non-smooth as the training proceeds. It is inspired by
recent studies in continuation methods [1], which address
a complex optimization problem by smoothing the original
function, turning it into a different problem that is easier to
optimize. By gradually reducing the amount of smoothing
during the training, it results in a sequence of optimization
problems converging to the original optimization problem.
Motivated by the continuation methods, we notice there ex-
ists a key relationship between the sign function and the
scaled tanh function in the concept of limit in mathematics,

limβ→∞ tanh (βz) = sgn (z) , (6)

where β > 0 is a scaling parameter. Increasing β, the scaled
tanh function tanh(βz) will become more non-smooth and
more saturated so that the deep networks using tanh(βz) as
the activation function will be more difficult to optimize, as
in Figure 1 (right). But fortunately, as β → ∞, the opti-
mization problem will converge to the original deep learn-
ing to hash problem in (4) with sgn(z) activation function.

Using the continuation methods, we design an optimiza-
tion method for HashNet in Algorithm 1. As deep network
with tanh(z) as the activation function can be successfully
trained, we start training HashNet with tanh(βtz) as the
activation function, where β0 = 1. For each stage t, after
HashNet converges, we increase βt and train (i.e. fine-tune)
HashNet by setting the converged network parameters as the
initialization for training the HashNet in the next stage. By
evolving tanh(βtz) with βt → ∞, the network will con-
verge to HashNet with sgn(z) as activation function, which
can generate exactly binary hash codes as we desire. The
efficacy of continuation in Algorithm 1 can be understood
as multi-stage pre-training, i.e., pre-training HashNet with
tanh(βtz) activation function is used to initialize HashNet
with tanh(βt+1z) activation function, which enables easier
progressive training of HashNet as the network is becoming
non-smooth in later stages by βt → ∞. Using m = 10 we
can already achieve fast convergence for training HashNet.

3.3. Convergence Analysis

We analyze that the continuation method in Algorithm 1
decreases HashNet loss (4) in each stage and each iteration.
Let Lij = wij (log (1 + exp (α 〈hi,hj〉))− αsij 〈hi,hj〉)
and L =

∑
sij∈S Lij , where hi ∈ {−1,+1}K are binary

hash codes. Note that when optimizing HashNet by contin-
uation in Algorithm 1, the network activation in each stage
t is g = tanh(βtz), which is continuous in nature and will
only become binary after convergence βt →∞. Denote by
Jij = wij (log (1 + exp (α 〈gi, gj〉))− αsij 〈gi, gj〉) and
J =

∑
sij∈S Jij the true loss we optimize in Algorithm 1,

where gi ∈ RK and hi = sgn(gi). Our results are two the-
orems, with proofs provided in the supplemental materials.

Theorem 1. The HashNet loss L will not change across
stages t and t+1 with bandwidths switched from βt to βt+1.

Theorem 2. Loss L decreases when optimizing loss J(g)
by the stochastic gradient descent (SGD) within each stage.

4. Experiments
We conduct extensive experiments to evaluate HashNet

against several state-of-the-art hashing methods on three
standard benchmarks. Datasets and implementations are
available at http://github.com/thuml/HashNet.

4.1. Setup

The evaluation is conducted on three benchmark image
retrieval datasets: ImageNet, NUS-WIDE and MS COCO.

ImageNet is a benchmark image dataset for Large Scale
Visual Recognition Challenge (ILSVRC 2015) [32]. It con-
tains over 1.2M images in the training set and 50K images
in the validation set, where each image is single-labeled by
one of the 1,000 categories. We randomly select 100 cate-
gories, use all the images of these categories in the training
set as the database, and use all the images in the validation
set as the queries; furthermore, we randomly select 100 im-
ages per category from the database as the training points.

NUS-WIDE1 [4] is a public Web image dataset which
contains 269,648 images downloaded from Flickr.com.
Each image is manually annotated by some of the 81 ground
truth concepts (categories) for evaluating retrieval models.
We follow similar experimental protocols as DHN [44] and
randomly sample 5,000 images as queries, with the remain-
ing images used as the database; furthermore, we randomly
sample 10,000 images from the database as training points.

MS COCO2 [23] is an image recognition, segmentation,
and captioning dataset. The current release contains 82,783
training images and 40,504 validation images, where each
image is labeled by some of the 80 categories. After pruning
images with no category information, we obtain 12,2218
images by combining the training and validation images.
We randomly sample 5,000 images as queries, with the rest
images used as the database; furthermore, we randomly
sample 10,000 images from the database as training points.

Following standard evaluation protocol as previous work
[40, 20, 44], the similarity information for hash function
learning and for ground-truth evaluation is constructed from
image labels: if two images i and j share at least one label,
they are similar and sij = 1; otherwise, they are dissimilar
and sij = 0. Note that, although we use the image labels to
construct the similarity information, our proposed HashNet

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
2http://mscoco.org

can learn hash codes when only the similarity information is
available. By constructing the training data in this way, the
ratio between the number of dissimilar pairs and the number
of similar pairs is roughly 100, 5, and 1 for ImageNet, NUS-
WIDE, and MS COCO, respectively. These datasets exhibit
the data imbalance phenomenon and can be used to evaluate
different hashing methods under data imbalance scenario.

We compare retrieval performance of HashNet with ten
classical or state-of-the-art hashing methods: unsupervised
methods LSH [10], SH [39], ITQ [12], supervised shallow
methods BRE [19], KSH [25], ITQ-CCA [12], SDH [34],
and supervised deep methods CNNH [40], DNNH [20],
DHN [44]. We evaluate retrieval quality based on five stan-
dard evaluation metrics: Mean Average Precision (MAP),
Precision-Recall curves (PR), Precision curves within Ham-
ming distance 2 (P@H=2), Precision curves with respect to
different numbers of top returned samples (P@N), and His-
togram of learned codes without binarization. For fair com-
parison, all methods use identical training and test sets. We
adopt MAP@1000 for ImageNet as each category has 1,300
images, and adopt MAP@5000 for the other datasets [44].

For shallow hashing methods, we use DeCAF7 features
[7] as input. For deep hashing methods, we use raw images
as input. We adopt the AlexNet architecture [18] for all deep
hashing methods, and implement HashNet based on the
Caffe framework [17]. We fine-tune convolutional layers
conv1–conv5 and fully-connected layers fc6–fc7 copied
from the AlexNet model pre-trained on ImageNet 2012 and
train the hash layer fch, all through back-propagation. As
the fch layer is trained from scratch, we set its learning rate
to be 10 times that of the lower layers. We use mini-batch
stochastic gradient descent (SGD) with 0.9 momentum and
the learning rate annealing strategy implemented in Caffe,
and cross-validate the learning rate from 10−5 to 10−3 with
a multiplicative step-size 10

1
2 . We fix the mini-batch size of

images as 256 and the weight decay parameter as 0.0005.

4.2. Results

The Mean Average Precision (MAP) results are shown in
Table 1. HashNet substantially outperforms all comparison
methods. Specifically, compared to the best shallow hash-
ing method using deep features as input, ITQ/ITQ-CCA, we
achieve absolute boosts of 15.7%, 15.5%, and 9.1% in aver-
age MAP for different bits on ImageNet, NUS-WIDE, and
MS COCO, respectively. Compared to the state-of-the-art
deep hashing method, DHN, we achieve absolute boosts of
14.6%, 3.7%, 2.9% in average MAP for different bits on the
three datasets, respectively. An interesting phenomenon is
that the performance boost of HashNet over DHN is signif-
icantly different across the three datasets. Specifically, the
performance boost on ImageNet is much larger than that on
NUS-WIDE and MS COCO by about 10%, which is very
impressive. Recall that the ratio between the number of dis-

http://github.com/thuml/HashNet
Flickr.com
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
http://mscoco.org

Table 1. Mean Average Precision (MAP) of Hamming Ranking for Different Number of Bits on the Three Image Datasets

Method ImageNet NUS-WIDE MS COCO
16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

HashNet 0.5059 0.6306 0.6633 0.6835 0.6623 0.6988 0.7114 0.7163 0.6873 0.7184 0.7301 0.7362
DHN [44] 0.3106 0.4717 0.5419 0.5732 0.6374 0.6637 0.6692 0.6714 0.6774 0.7013 0.6948 0.6944

DNNH [20] 0.2903 0.4605 0.5301 0.5645 0.5976 0.6158 0.6345 0.6388 0.5932 0.6034 0.6045 0.6099
CNNH [40] 0.2812 0.4498 0.5245 0.5538 0.5696 0.5827 0.5926 0.5996 0.5642 0.5744 0.5711 0.5671
SDH [34] 0.2985 0.4551 0.5549 0.5852 0.4756 0.5545 0.5786 0.5812 0.5545 0.5642 0.5723 0.5799
KSH [25] 0.1599 0.2976 0.3422 0.3943 0.3561 0.3327 0.3124 0.3368 0.5212 0.5343 0.5343 0.5361

ITQ-CCA [12] 0.2659 0.4362 0.5479 0.5764 0.4598 0.4052 0.3732 0.3467 0.5659 0.5624 0.5297 0.5019
ITQ [12] 0.3255 0.4620 0.5170 0.5520 0.5086 0.5425 0.5580 0.5611 0.5818 0.6243 0.6460 0.6574
BRE [19] 0.0628 0.2525 0.3300 0.3578 0.5027 0.5290 0.5475 0.5546 0.5920 0.6224 0.6300 0.6336
SH [39] 0.2066 0.3280 0.3951 0.4191 0.4058 0.4209 0.4211 0.4104 0.4951 0.5071 0.5099 0.5101

LSH [10] 0.1007 0.2350 0.3121 0.3596 0.3283 0.4227 0.4333 0.5009 0.4592 0.4856 0.5440 0.5849

Number of bits

20 25 30 35 40 45 50 55 60

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Precision within Hamming radius 2

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Precision-recall curve @ 64 bits

Number of top returned images
100 200 300 400 500 600 700 800 900 1000

P
re

c
is

io
n

0.3

0.4

0.5

0.6

0.7
HashNet
DHN
DNNH
CNNH
SDH
ITQ-CCA
KSH
ITQ
SH

(c) Precision curve w.r.t. top-N @ 64 bits

Figure 2. The experimental results of HashNet and comparison methods on the ImageNet dataset under three evaluation metrics.

Number of Bits

20 25 30 35 40 45 50 55 60

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Precision within Hamming radius 2

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Precision-recall curve @ 64 bits

Number of top returned images
100 200 300 400 500 600 700 800 900 1000

P
re

c
is

io
n

0.3

0.4

0.5

0.6
HashNet
DHN
DNNH
CNNH
SDH
ITQ-CCA
KSH
ITQ
SH

(c) Precision curve w.r.t. top-N @ 64 bits

Figure 3. The experimental results of HashNet and comparison methods on the NUS-WIDE dataset under three evaluation metrics.

Number of bits

20 25 30 35 40 45 50 55 60

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Precision within Hamming radius 2

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0.4

0.5

0.6

0.7

0.8

(b) Precision-recall curve @ 64 bits

Number of top returned images
100 200 300 400 500 600 700 800 900 1000

P
re

c
is

io
n

0.5

0.6

0.7

0.8
HashNet
DHN
DNNH
CNNH
SDH
ITQ-CCA
KSH
ITQ
SH

(c) Precision curve w.r.t. top-N @ 64 bits

Figure 4. The experimental results of HashNet and comparison methods on the MS COCO dataset under three evaluation metrics.

HashNet
P@10
90%

DHN
P@10
70%

Query Top 10 Retrieved Images

fire
engine

HashNet
P@10
80%

DHN
P@10
60%

buildings

HashNet
P@10
70%

DHN
P@10
50%

bicycle
bed
book

sports ball
umbrella

ImageNet

NUS-WIDE

MS COCO

Figure 5. Examples of top 10 retrieved images and precision@10.

similar pairs and the number of similar pairs is roughly 100,
5, and 1 for ImageNet, NUS-WIDE and MS COCO, respec-
tively. This data imbalance problem substantially deterio-
rates the performance of hashing methods trained from pair-
wise data, including all the deep hashing methods. HashNet
enhances deep learning to hash from imbalanced dataset by
Weighted Maximum Likelihood (WML), which is a princi-
pled solution to tackling the data imbalance problem. This
lends it the superior performance on imbalanced datasets.

The performance in terms of Precision within Hamming
radius 2 (P@H=2) is very important for efficient retrieval
with binary hash codes since such Hamming ranking only
requires O(1) time for each query. As shown in Figures
2(a), 3(a) and 4(a), HashNet achieves the highest P@H=2
results on all three datasets. In particular, P@H=2 of Hash-
Net with 32 bits is better than that of DHN with any bits.
This validates that HashNet can learn more compact binary
codes than DHN. When using longer codes, the Hamming
space will become sparse and few data points fall within the
Hamming ball with radius 2 [9]. This is why most hashing
methods achieve best accuracy with moderate code lengths.

The retrieval performance on the three datasets in terms
of Precision-Recall curves (PR) and Precision curves with
respect to different numbers of top returned samples (P@N)
are shown in Figures 2(b)∼4(b) and Figures 2(c)∼4(c), re-
spectively. HashNet outperforms comparison methods by
large margins. In particular, HashNet achieves much higher
precision at lower recall levels or when the number of top
results is small. This is desirable for precision-first retrieval,
which is widely implemented in practical systems. As an
intuitive illustration, Figure 5 shows that HashNet can yield
much more relevant and user-desired retrieval results.

Recent work [28] studies two evaluation protocols for
supervised hashing: (1) supervised retrieval protocol where
queries and database have identical classes and (2) zero-shot
retrieval protocol where queries and database have different
classes. Some supervised hashing methods perform well in

Table 2. MAP on ImageNet with Zero-Shot Retrieval Protocol [28]
Method 16 bits 32 bits 48 bits 64 bits
HashNet 0.4411 0.5274 0.5651 0.5756

DHN [44] 0.2891 0.4421 0.5123 0.5342

-40 -20 0 20 40
-40

-30

-20

-10

0

10

20

30

40

(a) HashNet

-60 -40 -20 0 20 40
-40

-30

-20

-10

0

10

20

30

40

(b) DHN

Figure 6. The t-SNE of hash codes learned by HashNet and DHN.

one protocol but poorly in another protocol. Table 2 shows
the MAP results on ImageNet dataset under the zero-shot
retrieval protocol, where HashNet substantially outperforms
DHN. Thus, HashNet works well under different protocols.

4.3. Empirical Analysis

Visualization of Hash Codes: We visualize the t-SNE
[7] of hash codes generated by HashNet and DHN on Ima-
geNet in Figure 6 (for ease of visualization, we sample 10
categories). We observe that the hash codes generated by
HashNet show clear discriminative structures in that differ-
ent categories are well separated, while the hash codes gen-
erated by DHN do not show such discriminative structures.
This suggests that HashNet can learn more discriminative
hash codes than DHN for more effective similarity retrieval.

Ablation Study: We go deeper with the efficacy of the
weighted maximum likelihood and continuation methods.
We investigate three variants of HashNet: (1) HashNet+C,
variant using continuous similarity cij =

yi∩yj

yi∪yj
when im-

age labels are given; (2) HashNet-W, variant using maxi-
mum likelihood instead of weighted maximum likelihood,
i.e. wij = 1; (3) HashNet-sgn, variant using tanh() instead
of sgn() as activation function to generate continuous codes
and requiring a separated binarization step to generate hash
codes. We compare results of these variants in Table 3.

By weighted maximum likelihood estimation, HashNet
outperforms HashNet-W by substantially large margins of
12.4%, 2.8% and 0.1% in average MAP for different bits on
ImageNet, NUS-WIDE and MS COCO, respectively. The
standard maximum likelihood estimation has been widely
adopted in previous work [40, 44]. However, this estima-
tion does not account for the data imbalance, and may suffer
from performance drop when training data is highly imbal-
anced (e.g. ImageNet). In contrast, the proposed weighted
maximum likelihood estimation (1) is a principled solution
to tackling the data imbalance problem by weighting the
training pairs according to the importance of misclassifying
that pair. Recall that MS COCO is a balanced dataset, hence
HashNet and HashNet-W may yield similar MAP results.

Table 3. Mean Average Precision (MAP) Results of HashNet and Its Variants, HashNet+C, HashNet-W, and HashNet-sgn on Three Datasets

Method ImageNet NUS-WIDE MS COCO
16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

HashNet+C 0.5059 0.6306 0.6633 0.6835 0.6646 0.7024 0.7209 0.7259 0.6876 0.7261 0.7371 0.7419
HashNet 0.5059 0.6306 0.6633 0.6835 0.6623 0.6988 0.7114 0.7163 0.6873 0.7184 0.7301 0.7362

HashNet-W 0.3350 0.4852 0.5668 0.5992 0.6400 0.6638 0.6788 0.6933 0.6853 0.7174 0.7297 0.7348
HashNet-sgn 0.4249 0.5450 0.5828 0.6061 0.6603 0.6770 0.6921 0.7020 0.6449 0.6891 0.7056 0.7138

Number of Iterations
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

L
o

s
s
 V

a
lu

e

0

0.5

1

1.5

2

2.5

3

3.5

4

HashNet-sign
HashNet+sign
DHN-sign
DHN+sign

(a) ImageNet

Number of Iterations
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

L
o

s
s
 V

a
lu

e

0

0.5

1

1.5

2

2.5

3

3.5

HashNet-sign
HashNet+sign
DHN-sign
DHN+sign

(b) NUS-WIDE

Number of Iterations
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

L
o

s
s
 V

a
lu

e

0

0.5

1

1.5

2

2.5

3

3.5

HashNet-sign
HashNet+sign
DHN-sign
DHN+sign

(c) COCO

Figure 7. Losses of HashNet and DHN through training process.

By further considering continuous similarity (cij =
yi∩yj

yi∪yj
),

HashNet+C achieves even better accuracy than HashNet.
By training HashNet with continuation, HashNet outper-

forms HashNet-sgn by substantial margins of 8.1%, 1.4%
and 3.0% in average MAP on ImageNet, NUS-WIDE, and
MS COCO, respectively. Due to the ill-posed gradient prob-
lem, existing deep hashing methods cannot learn exactly bi-
nary hash codes using sgn() as activation function. Instead,
they need to use surrogate functions of sgn(), e.g. tanh(),
as the activation function and learn continuous codes, which
require a separated binarization step to generate hash codes.
The proposed continuation method is a principled solution
to deep learning to hash with sgn() as activation function,
which learn lossless binary hash codes for accurate retrieval.

Loss Value Through Training Process: We compare
the change of loss values of HashNet and DHN through the
training process on ImageNet, NUS-WIDE and MSCOCO.
We display the loss values before (-sign) and after (+sign)
binarization, i.e. J(g) and L(h). Figure 7 reveals three im-
portant observations: (a) Both methods converge in terms
of the loss values before and after binarization, which vali-
dates the convergence analysis in Section 3.3. (b) HashNet
converges with a much smaller training loss than DHN both
before and after binarization, which implies that HashNet
can preserve the similarity relationship in Hamming space
much better than DHN. (c) The two loss curves of HashNet
before and after binarization become close to each other and
overlap completely when convergence. This shows that the
continuation method enables HashNet to approach the true
loss defined on the exactly binary codes without continu-
ous relaxation. But there is a large gap between two loss
curves of DHN, implying that DHN and similar methods
[34, 22, 24] cannot learn exactly binary codes by minimiz-
ing quantization error of codes before and after binarization.

Histogram of Codes Without Binarization: As dis-
cussed previously, the proposed HashNet can learn exactly

HashNet
0 0.5 1

F
re

q
u

e
n

c
y

0

500

1000

1500

2000

2500

3000

DHN
0 0.5 1

(a) ImageNet

HashNet
0 0.5 1

F
re

q
u

e
n

c
y

0

500

1000

1500

2000

2500

3000

3500

4000

DHN
0 0.5 1

(b) NUS-WIDE

HashNet
0 0.5 1

F
re

q
u

e
n

c
y

0

500

1000

1500

2000

2500

3000

DHN
0 0.5 1

(c) COCO

Figure 8. Histogram of non-binarized codes of HashNet and DHN.

binary hash codes while previous deep hashing methods can
only learn continuous codes and generate binary hash codes
by post-step sign thresholding. To verify this key property,
we plot the histograms of codes learned by HashNet and
DHN on the three datasets without post-step binarization.
The histograms can be plotted by evenly dividing [0, 1] into
100 bins, and calculating the frequency of codes falling into
each bin. To make the histograms more readable, we show
absolute code values (x-axis) and squared root of frequency
(y-axis). Histograms in Figure 8 show that DHN can only
generate continuous codes spanning across the whole range
of [0, 1]. This implies that if we quantize these continuous
codes into binary hash codes (taking values in {−1, 1}) in
a post-step, we may suffer from large quantization error es-
pecially for the codes near zero. On the contrary, the codes
of HashNet without binarization are already exactly binary.

5. Conclusion

This paper addressed deep learning to hash from imbal-
anced similarity data by the continuation method. The pro-
posed HashNet can learn exactly binary hash codes by op-
timizing a novel weighted pairwise cross-entropy loss func-
tion in deep convolutional neural networks. HashNet can be
effectively trained by the proposed multi-stage pre-training
algorithm carefully crafted from the continuation method.
Comprehensive empirical evidence shows that HashNet can
generate exactly binary hash codes and yield state-of-the-art
multimedia retrieval performance on standard benchmarks.

6. Acknowledgments

This work was supported by the National Key R&D Pro-
gram of China (No. 2016YFB1000701), the National Natu-
ral Science Foundation of China (No. 61502265, 61325008,
and 71690231), the National Sci.&Tech. Supporting Pro-
gram (2015BAF32B01), and the Tsinghua TNList Projects.

References
[1] E. L. Allgower and K. Georg. Numerical continua-

tion methods: an introduction, volume 13. Springer
Science & Business Media, 2012. 2, 4

[2] Y. Bengio, A. Courville, and P. Vincent. Representa-
tion learning: A review and new perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 35(8):1798–1828, Aug 2013. 1

[3] Y. Bengio, P. Lamblin, D. Popovici, and
H. Larochelle. Greedy layer-wise training of
deep networks. In B. Schölkopf, J. C. Platt, and
T. Hoffman, editors, NIPS, pages 153–160. MIT
Press, 2007. 4

[4] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T.
Zheng. Nus-wide: A real-world web image database
from national university of singapore. In ICMR. ACM,
2009. 5

[5] M. Courbariaux and Y. Bengio. Binarynet: Train-
ing deep neural networks with weights and activations
constrained to +1 or -1. In NIPS, 2016. 4

[6] J. P. Dmochowski, P. Sajda, and L. C. Parra. Max-
imum likelihood in cost-sensitive learning: Model
specification, approximations, and upper bounds.
Journal of Machine Learning Research (JMLR),
11(Dec):3313–3332, 2010. 3

[7] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. Decaf: A deep convolutional
activation feature for generic visual recognition. In
ICML, 2014. 5, 7

[8] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou.
Deep hashing for compact binary codes learning. In
CVPR, pages 2475–2483. IEEE, 2015. 1

[9] D. J. Fleet, A. Punjani, and M. Norouzi. Fast search in
hamming space with multi-index hashing. In CVPR.
IEEE, 2012. 1, 7

[10] A. Gionis, P. Indyk, R. Motwani, et al. Similarity
search in high dimensions via hashing. In VLDB, vol-
ume 99, pages 518–529. ACM, 1999. 1, 5, 6

[11] Y. Gong, S. Kumar, H. Rowley, S. Lazebnik, et al.
Learning binary codes for high-dimensional data us-
ing bilinear projections. In CVPR, pages 484–491.
IEEE, 2013. 1

[12] Y. Gong and S. Lazebnik. Iterative quantization: A
procrustean approach to learning binary codes. In
CVPR, pages 817–824, 2011. 1, 2, 5, 6

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. CVPR, 2016. 2, 4

[14] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learn-
ing algorithm for deep belief nets. Neural Computa-
tion, 18(7):1527–1554, 2006. 1, 4

[15] S. Ioffe and C. Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. In ICML, 2015. 4

[16] H. Jegou, M. Douze, and C. Schmid. Product quan-
tization for nearest neighbor search. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
(TPAMI), 33(1):117–128, Jan 2011. 2

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding.
In ACM Multimedia Conference. ACM, 2014. 5

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. In NIPS, 2012. 1, 2, 5

[19] B. Kulis and T. Darrell. Learning to hash with binary
reconstructive embeddings. In NIPS, pages 1042–
1050, 2009. 1, 2, 5, 6

[20] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous fea-
ture learning and hash coding with deep neural net-
works. In CVPR. IEEE, 2015. 1, 2, 5, 6

[21] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-
based multimedia information retrieval: State of the
art and challenges. ACM Transactions on Multime-
dia Computing, Communications, and Applications
(TOMM), 2(1):1–19, Feb. 2006. 1

[22] W.-J. Li, S. Wang, and W.-C. Kang. Feature learning
based deep supervised hashing with pairwise labels.
In IJCAI, 2016. 1, 2, 8

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft
coco: Common objects in context. In ECCV, pages
740–755. Springer, 2014. 5

[24] H. Liu, R. Wang, S. Shan, and X. Chen. Deep super-
vised hashing for fast image retrieval. In CVPR, pages
2064–2072, 2016. 1, 2, 8

[25] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang.
Supervised hashing with kernels. In CVPR. IEEE,
2012. 1, 2, 5, 6

[26] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing
with graphs. In ICML. ACM, 2011. 2

[27] X. Liu, J. He, B. Lang, and S.-F. Chang. Hash bit
selection: a unified solution for selection problems in
hashing. In CVPR, pages 1570–1577. IEEE, 2013. 1

[28] C. Ma, I. W. Tsang, F. Peng, and C. Liu. Partial hash
update via hamming subspace learning. IEEE Trans-
actions on Image Processing (TIP), 26(4):1939–1951,
2017. 7

[29] V. Nair and G. E. Hinton. Rectified linear units im-
prove restricted boltzmann machines. In J. Fürnkranz
and T. Joachims, editors, ICML, pages 807–814. Om-
nipress, 2010. 4

[30] M. Norouzi and D. M. Blei. Minimal loss hashing
for compact binary codes. In ICML, pages 353–360.
ACM, 2011. 1, 2

[31] M. Norouzi, D. M. Blei, and R. R. Salakhutdinov.
Hamming distance metric learning. In NIPS, pages
1061–1069, 2012. 2

[32] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. Im-
ageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 5

[33] R. Salakhutdinov and G. E. Hinton. Learning a non-
linear embedding by preserving class neighbourhood
structure. In AISTATS, pages 412–419, 2007. 2

[34] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised
discrete hashing. In CVPR. IEEE, June 2015. 1, 5, 6,
8

[35] A. W. Smeulders, M. Worring, S. Santini, A. Gupta,
and R. Jain. Content-based image retrieval at the end
of the early years. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI), 22(12):1349–
1380, 2000. 2

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: A simple way to pre-
vent neural networks from overfitting. Journal of Ma-
chine Learning Research (JMLR), 15(1):1929–1958,
Jan. 2014. 4

[37] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised
hashing for large-scale search. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI),
34(12):2393–2406, 2012. 1

[38] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for
similarity search: A survey. Arxiv, 2014. 1, 2

[39] Y. Weiss, A. Torralba, and R. Fergus. Spectral hash-
ing. In NIPS, 2009. 2, 5, 6

[40] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised
hashing for image retrieval via image representation
learning. In AAAI, pages 2156–2162. AAAI, 2014. 1,
2, 5, 6, 7

[41] F. X. Yu, S. Kumar, Y. Gong, and S.-F. Chang. Cir-
culant binary embedding. In ICML, pages 353–360.
ACM, 2014. 1

[42] P. Zhang, W. Zhang, W.-J. Li, and M. Guo. Supervised
hashing with latent factor models. In SIGIR, pages
173–182. ACM, 2014. 1

[43] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep se-
mantic ranking based hashing for multi-label image
retrieval. In CVPR, pages 1556–1564, 2015. 1

[44] H. Zhu, M. Long, J. Wang, and Y. Cao. Deep hash-
ing network for efficient similarity retrieval. In AAAI.
AAAI, 2016. 1, 2, 5, 6, 7

A. Supplemental Material:
HashNet: Deep Learning to Hash by Con-
tinuation

A.1. Convergence Analysis

We briefly analyze that the continuation optimization in
Algorithm 1 will decrease the loss of HashNet (4) in each
stage and in each iteration until converging to HashNet with
sign activation function that generates exactly binary codes.

LetLij = wij (log (1 + exp (α 〈hi,hj〉))− αsij 〈hi,hj〉)
and L =

∑
sij∈S Lij , where hi ∈ {−1,+1}K are binary

hash codes. Note that when optimizing HashNet by contin-
uation in Algorithm 1, network activation in each stage t is
g = tanh(βtz), which is continuous in nature and will only
become binary when convergence βt → ∞. Denote by
Jij = wij (log (1 + exp (α 〈gi, gj〉))− αsij 〈gi, gj〉) and
J =

∑
sij∈S Jij the true loss we optimize in Algorithm 1,

where gi ∈ RK and note that hi = sgn(gi). We will show
that HashNet loss L(h) descends when minimizing J(g).

Theorem 3. The HashNet loss L will not change across
stages t and t+1 with bandwidths switched from βt to βt+1.

Proof. When the algorithm switches from stages t to t + 1
with bandwidths changed from βt to βt+1, only the network
activation is changed from tanh(βtz) to tanh(βt+1z) but
its sign h = sgn(tanh(βtz)) = sgn(tanh(βt+1z)), i.e. the
hash code, remains the same. Thus L is unchanged.

For each pair of binary codes hi, hj and their continuous
counterparts gi, gj , the derivative of J w.r.t. each bit k is

∂J

∂gik
= wijα

(
1

1 + exp (−α 〈gi, gj〉)
− sij

)
gjk, (7)

where k = 1, . . . ,K. The derivative of J w.r.t. gj can be
defined similarly. Updating gi by SGD, the updated g′i is

g′ik = gik − η
∂J

∂gik

= gik − ηwijα
(

1

1 + exp (−α 〈gi, gj〉)
− sij

)
gjk,

(8)
where η is the learning rate and g′j is computed similarly.

Lemma 1. Denote by hi = sgn(gi), h′i = sgn(g′i), then{〈
h′i,h

′
j

〉
> 〈hi,hj〉 , sij = 1,〈

h′i,h
′
j

〉
6 〈hi,hj〉 , sij = 0.

(9)

Proof. Since 〈hi,hj〉 =
∑K
k=1 hikhjk, Lemma 1 can be

proved by verifying that h′ikh
′
jk > hikhjk if sij = 1 and

h′ikh
′
jk 6 hikhjk if sij = 0, ∀k = 1, 2, . . . ,K.

Case 1. sij = 0.
(1) If gik < 0, gjk > 0, then ∂J

∂gik
> 0, ∂J

∂gjk
< 0.

Thus, h′ik 6 hik = −1, h′jk > hjk = 1. And we have
h′ikh

′
jk = −1 = hikhjk.

(2) If gik > 0, gjk < 0, then ∂J
∂gik

< 0, ∂J
∂gjk

> 0.
Thus, h′ik > hik = 1, h′jk 6 hjk = −1. And we have
h′ikh

′
jk = −1 = hikhjk.

(3) If gik < 0, gjk < 0, then ∂J
∂gik

< 0, ∂J
∂gjk

< 0. Thus
h′ik > hik = −1, h′jk > hjk = −1. So h′ik and h′jk may be
either +1 or −1 and we have h′ikh

′
jk 6 1 = hikhjk.

(4) If gik > 0, gjk > 0, then ∂J
∂gik

> 0, ∂J
∂gjk

> 0. Thus
h′ik 6 hik = 1, h′jk 6 hjk = 1. So h′ik and h′jk may be
either +1 or −1 and we have h′ikh

′
jk 6 1 = hikhjk.

Case 2. sij = 1. It can be proved similarly as Case 1.

Theorem 4. Loss L decreases when optimizing loss J(g)
by the stochastic gradient descent (SGD) within each stage.

Proof. The gradient of loss L w.r.t. hash codes 〈hi,hj〉 is

∂L

∂ 〈hi,hj〉
= wijα

(
1

1 + exp (−α 〈hi,hj〉)
− sij

)
.

(10)
We observe that{

∂L
∂〈hi,hj〉 6 0, sij = 1,
∂L

∂〈hi,hj〉 > 0, sij = 0.
(11)

By substituting Lemma 1: if sij = 1, then
〈
h′i,h

′
j

〉
>

〈hi,hj〉, and thus L(h′i,h
′
j) 6 L(hi,hj); if sij = 0, then〈

h′i,h
′
j

〉
6 〈hi,hj〉, and thus L(h′i,h

′
j) 6 L(hi,hj).

