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Abstract

Deep learning to hash improves image retrieval perfor-
mance by end-to-end representation learning and hash cod-
ing from training data with pairwise similarity information.
Subject to the scarcity of similarity information that is often
expensive to collect for many application domains, existing
deep learning to hash methods may overfit the training data
and result in substantial loss of retrieval quality. This paper
presents HashGAN, a novel architecture for deep learning
to hash, which learns compact binary hash codes from both
real images and diverse images synthesized by generative
models. The main idea is to augment the training data with
nearly real images synthesized from a new Pair Conditional
Wasserstein GAN (PC-WGAN) conditioned on the pairwise
similarity information. Extensive experiments demonstrate
that HashGAN can generate high-quality binary hash codes
and yield state-of-the-art image retrieval performance on
three benchmarks, NUS-WIDE, CIFAR-10, and MS-COCO.

1. Introduction
In the big data era, large-scale and high-dimensional me-

dia data has been pervasive in search engines and social net-
works. To guarantee retrieval quality and computation effi-
ciency, approximate nearest neighbors (ANN) search has at-
tracted increasing attention. Parallel to the traditional index-
ing methods [21], another advantageous solution is hash-
ing methods [37], which transform high-dimensional me-
dia data into compact binary codes and generate similar bi-
nary codes for similar data items. This paper will focus on
the learning to hash methods [37] that build data-dependent
hash encoding schemes for efficient image retrieval, which
have shown better performance than data-independent hash-
ing methods, e.g. Locality-Sensitive Hashing (LSH) [12].

Many learning to hash methods have been proposed to
enable efficient ANN search by Hamming ranking of com-
pact binary hash codes [19, 13, 28, 11, 25, 36, 41]. Recently,
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deep learning to hash methods [40, 20, 34, 10, 42, 22, 24, 6]
have shown that deep neural networks can enable end-to-
end representation learning and hash coding with nonlinear
hash functions. These deep learning to hash methods have
shown state-of-the-art results on many datasets. In partic-
ular, it proves crucial to jointly learn similarity-preserving
representations and control quantization error of converting
continuous representations to binary codes [42, 22, 24, 6].

However, the encouraging performance comes only by
large-scale image data where sufficient supervised informa-
tion is available in the forms of pointwise labels or pairwise
similarity. In many image retrieval applications, the super-
vised information available may be insufficient, especially
for new domains. And it is usually costly or even prohibitive
to annotate sufficient training data for deep learning to hash.
Subject to the scarcity of similarity information, existing
deep learning to hash methods [42, 6] may overfit the train-
ing images and result in substantial loss of retrieval quality.

This paper presents HashGAN, a novel deep architecture
for deep learning to hash, which learns compact binary hash
codes from both real images and large-scale synthesized
images. We propose a novel Pair Conditional Wasserstein
GAN (PC-WGAN), which synthesizes discriminative and
diverse images by conditioning on the pairwise similarity
information. To the best of our knowledge, PC-WGAN is
the first GAN that enables image synthesis by incorporating
pairwise similarity information. Well-specified loss func-
tions including cosine cross-entropy loss and cosine quan-
tization loss are proposed for similarity-preserving learning
and quantization error control. The proposed HashGAN can
be trained end-to-end by back-propagation in a minimax op-
timization mechanism. Extensive experiments demonstrate
that HashGAN can generate high-quality binary hash codes
and yield state-of-the-art multimedia retrieval performance
on three datasets, NUS-WIDE, CIFAR-10, and MS-COCO.

2. Related Work
Hashing Methods. Existing hashing methods [2, 4, 19,

13, 28, 11, 25, 41] consist of unsupervised and supervised



hashing. Please refer to [37] for a comprehensive survey.
Unsupervised hashing methods learn hash functions that

encode data to binary codes by training from unlabeled data
[33, 13, 17, 39, 26]. Supervised hashing further explores su-
pervised information (e.g. pairwise similarity or relevance
feedback) to generate compact hash codes [19, 28, 25, 34].
Recently, deep learning to hash methods yield breakthrough
results on image retrieval datasets by blending the power of
deep learning [40, 20]. In particular, DHN [42] is the first
end-to-end framework that jointly preserves pairwise simi-
larity and controls the quantization error. HashNet [6] im-
proves DHN by balancing the positive and negative pairs in
training data to trade of precision vs. recall, and by continu-
ation technique for lower quantization error, which obtains
state-of-the-art performance on several benchmark datasets.

Generative Models. Generative Adversarial Networks
(GANs) [14] are powerful models for generating images in
a minimax game mechanism without requiring supervised
information. State-of-the-art unsupervised generative mod-
els for image synthesis include Deep Convolutional GANs
(DCGANs) [31] and Wasserstein GANs (WGANs) [1, 15].
Recently, a more powerful family of generative models syn-
thesize images with GANs by further conditioning on su-
pervised information (e.g., class labels or text descriptions)
[27, 32]. Auxiliary Classifier GAN (AC-GAN) [29] is the
state-of-the-art solution to integrate supervised information
by feeding it into the generator and adding a loss function to
account for the supervised information in the discriminator.

Existing supervised generative models only incorporate
pointwise supervised information, e.g. class labels or text
descriptions. However, in many real retrieval applications,
we only have pairwise similarity information for training
hashing models [40, 20, 42, 5, 6]. Deep Semantic Hashing
(DSH) [30] is the first hashing method that explores GANs
for image synthesis, but it can only incorporate pointwise
side information (class labels) which is often unavailable in
online image retrieval applications. Different from previous
methods, we propose a new HashGAN architecture, which
consists of a specifically-designed Pair Conditional Wasser-
stein GAN (PC-WGAN) that enables incorporation of pair-
wise similarity information for generating diverse synthetic
images, and a deep hashing network trained with both real
and synthetic images to generate nearly lossless hash codes.

3. HashGAN
In similarity retrieval systems, we are given N training

points X = {xi}Ni=1, where some pairs of points xi and xj
are given with pairwise similarity labels sij , where sij = 1
if xi and xj are similar while sij = 0 if xi and xj are dis-
similar. The goal of deep learning to hash is to learn nonlin-
ear hash function F : x 7→ h ∈ {−1, 1}K from input space
to Hamming space {−1, 1}K using deep neural networks,
which encodes each point x into compact K-bit hash code

h = F (x) such that the similarity information S between
the given pairs can be preserved in the compact hash codes.
In supervised hashing, the similarity pairs S = {sij} can be
constructed from semantic labels of data points or relevance
feedback from click-through data in online search systems.

This paper presents HashGAN, a deep learning to hash
architecture with a novel Pair Conditional Wasserstein GAN
(PC-WGAN) specifically designed for generative learning
from images with pairwise similarity information. Figure 1
shows the architecture of HashGAN, which consists of two
main components. (1) A pair conditional Wasserstein GAN
(PC-WGAN), which takes as inputs the training images and
pairwise similarity and jointly learns a generator G and a
discriminator D: the generator G accepts as input the con-
catenation of a random noise u and an embedding vector v
that encodes the similarity information to synthesize nearly
real images; the discriminator D tries to distinguish the real
and synthetic images using the adversarial loss. (2) A hash
encoder F , which generates compact binary hash codes h
for all images in a Bayesian learning framework: the frame-
work jointly preserves the similarity information of both the
real and synthetic images by a cosine cross-entropy loss and
controls the quantization error by a cosine quantization loss.

3.1. Pair Conditional WGAN

The training strategy of generative adversarial networks
(GANs) [14] defines a minimax game between two compet-
ing networks: a generator network G that captures underly-
ing data distribution of real images for synthesizing images,
and a discriminator network D that distinguishes the real
images from synthetic images. Specifically, the generatorG
accepts as input a random noise u, which is sampled from
some simple noise distribution such as uniform distribution
or spherical Gaussian distribution, and synthesizes a fake
image x̃ = G(u); the discriminatorD takes as inputs either
a real image x or a synthetic image x̃ and must distinguish
them by minimizing the classification error of probabilities
D(x) and D(x̃). To tackle the training difficulty of GANs,
[15] proposes an improved training strategy of Wasserstein
GAN (WGAN) [1], which trains the discriminator through
the Wasserstein distance that is continuous everywhere and
differentiable almost everywhere, and proposes to enforce a
differentiable Lipschitz constraint with gradient penalty as

min
D

LD = E
x̃∼Pg

[D (x̃)]− E
x∼Pr

[D (x)]

+ γ E
x̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)

2
]
,

(1)

where γ is the penalty coefficient typically set as γ = 10,
Pr is the real data distribution, Pg is the generator distribu-
tion implicitly defined by x̃ = G(u), and Px̂ is implicitly
defined as sampling uniformly along straight lines between
pairs of points sampled from the real data distribution Pr
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Figure 1. HashGAN for deep learning to hash with a new Pair Conditional Wasserstein GAN (PC-WGAN). The architecture of the proposed
HashGAN consists of two main components. (1) A pair conditional Wasserstein GAN (PC-WGAN), which takes as inputs the training
images and pairwise similarity and jointly learns a generator G and a discriminator D: the generator G accepts as input the concatenation
of a random noise u and an embedding vector v that encodes the similarity information to synthesize nearly real images; the discriminator
D tries to distinguish the real and synthetic images using the adversarial loss. (2) A hash encoder F , which generates compact binary hash
codes h for all images in a Bayesian learning framework: the framework jointly preserves the similarity information of both the real and
synthetic images by a cosine cross-entropy loss and minimizes the quantization error by a cosine quantization loss. Best viewed in color.

and the generator distribution Pg . In the minimax game, the
generator is trained to maximize probability of classifying
synthetic images as real, which is equivalent to minimizing

min
G

LG = E
u∼Pu

[−D (G(u))] , (2)

where u is a random noise sampled from some simple noise
distribution Pu. The goal of the generator is to maximally
fool the discriminator with nearly real synthesized images.
This improved WGAN [15] performs better than standard
WGAN and enables stable and efficient training of various
GAN architectures with almost no hyper-parameter tuning.

While WGAN with stabilized training strategy [15] can
synthesize good images from random noises, it cannot take
the advantage of useful side information. Class conditional
synthesis can significantly improve the quality of generated
samples [29], by supplying both the generator and discrimi-
nator with class labels to produce class conditional samples
[27]. The auxiliary classifier GAN (AC-GAN) [29] is the
state-of-the-art solution to integrate side information, which
enables conditioning by feeding the supervised information
into the generator and adding a new loss function with the
supervised information in the discriminator. The generator
synthesizes images from the inputs combined of supervised
information and random noise, and the discriminator jointly
distinguishes different classes as well as real from synthetic.

A major disadvantage of AC-GAN is that it can only be
conditioned on point-wise supervised information, such as
class labels or feature vectors from counterpart modalities.
However, in deep learning to hash, we only have data X =

{xi}Ni=1 with pairwise similarity information S = {sij}. A
naive solution to applying AC-GAN on data with pairwise
information is that for each image xi, use each row si· ∈
RN of the similarity matrix S as the supervised information.
Unfortunately, this solution is infeasible since the number
N of training points is usually larger than several thousands
in deep learning to hash, whereas AC-GAN with such high-
dimensional inputs cannot be trained successfully. Hence,
it still remains an open problem how to enable GANs and
WGANs conditioned on pairwise supervised information.

In this paper, we propose Pair Conditional WGAN (PC-
WGAN), a new extension of WGAN to learn from data with
pairwise supervised information {X ,S}. At first, we reduce
the high-dimension of pointwise supervised information si·
by a similarity embedding approach, which embeds the sim-
ilarity information si· associated with each image to a low-
dimensional vector vi ∈ RV . The similarity embedding can
be attained by minimizing the following reconstruction loss

min
vi>0|Ni=1

LV =
∑
sij∈S

(
sij − vT

i vj
)2
, (3)

where LV is the similarity embedding loss, and the nonneg-
ative constraints are imposed to make the latent embeddings
consistent with prior supervised information, which is given
as nonnegative similarity labels {sij}. Since sij ≈ vT

i vj ,
each embedding vector vi can approximately represent the
similarity information of each point xi with V -dimension,
which is low-dimensional and can be fed as inputs to GANs.

In PC-WGAN, each generated point has a corresponding
embedding vector vi ∼ Pv in addition to the random noise



ui ∈ RV . The generator uses both embedding vector and
random noise to generate every image as x̃i = G(vi,ui).
The discriminator should give two probability distributions:
one over the synthetic vs real asD (x̃) andD (x) for binary
classification, and another over the similar vs dissimilar in
all image pairs asC (x̃i,xj) and 1−C (x̃i,xj) for pairwise
classification. More specifically, the discriminator network
(except the last classifier layer) is shared between D and C.
Denote by z̃ and z the last-layer activations of network C
for pairwise classification thenC (x̃i,xj) = 1

1+exp(−z̃T
i zj)

.

The overall loss for training discriminator of PC-WGAN is

min
D,C

LD,C = E
x̃∼Pg

[D (x̃)]− E
x∼Pr

[D (x)]

+ γ E
x̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)

2
]

−
∑
sij∈S

sij logC (x̃i,xj)

−
∑
sij∈S

(1− sij) log (1− C (x̃i,xj)),

(4)

where the third and fourth rows are the cross-entropy loss
between probability C (x̃i,xj) and pairwise similarity sij .
In the minimax game, the generator is trained to maximize
probabilities of synthetic being real as well as similar being
dissimilar or vice versa, which is equivalent to minimizing

min
G,V

LG,V = E
v∼Pv
u∼Pu

[−D (G (v,u))] +
∑
sij∈S

(
sij − vT

i vj
)2

−
∑
sij∈S

sij logC (x̃i,xj)

−
∑
sij∈S

(1− sij) log (1− C (x̃i,xj)),

(5)
and note that x̃i = G(vi,ui). The goal of the generator is
to maximally fool the discriminator with synthetic images
generated from the similarity embedding and random noise.

In applications, the size of training data with similarity
information is remarkably smaller than the size of complete
unlabeled data. We enable PC-WGAN to learn from both
labeled data and unlabeled data to synthesize high-quality
images by further using zero embedding vector vj = 0 for
each unlabeled image xj /∈ X . The generator distribution
Pg changes to G(vi,ui) ∪ G(0,uj), and Pr becomes dis-
tributions of both supervised and unsupervised real images.
Though both Pg and Pr are changed due to unlabeled data,
the PC-WGAN objectives in (4) and (5) remain unchanged.

3.2. Deep Learning to Hash

The PC-WGAN trained on images with pairwise similar-
ity information can generate high-quality synthetic images,
which can be used to boost the performance of deep learn-
ing to hash over images with insufficient similarity labels.

In this paper, we propose a hash encoder network F , which
generates compact hash codes for both synthetic and real
images in a Bayesian framework. The hash encoder con-
sists of three components: (1) a deep convolutional network
(CNN) for learning deep compact codes hi = F (x̄i) for
each input image x̄i, where x̄i can be a real image x with
similarity information or a synthetic image x̃ generated by
PC-WGAN with similarity information; (2) a cosine cross-
entropy loss for similarity-preserving hash learning; and (3)
a cosine quantization loss for controlling quantization error.

Given training data X = {xi}Ni=1 and synthetic images
X̃ = {x̃j}Mj=1, we can expand the training data toX∪X̃ and
the similarity labels to S = {sij}N+M

i,j=1 for deep hashing.
The logarithm Maximum a Posteriori (MAP) estimation of
hash codes H = [h1, . . . ,hN+M ] given S and X ∪ X̃ is

logP (H|S) ∝ logP (S|H)P (H)

=
∑

sij∈S

wij logP (sij |hi,hj) +

N+M∑
i=1

logP (hi),

(6)
where P (S|H) =

∏
sij∈S [P (sij |hi,hj)]wij is weighted

likelihood function, and wij is the weight for each training
pair (x̄i, x̄j , sij), which tackles the data imbalance problem
by weighting the training pairs according to the importance
of misclassifying that pair [8]. Since each similarity label
in S can only be sij = 1 or sij = 0, to account for the data
imbalance between similar and dissimilar pairs, we propose

wij =

{
|S| / |S1| , sij = 1

|S| / |S0| , sij = 0
(7)

where S1 = {sij ∈ S : sij = 1} is the set of similar pairs
and S0 = {sij ∈ S : sij = 0} is the set of dissimilar pairs.
For each pair, P (sij |hi,hj) is the conditional probability
of similarity label sij given a pair of hash codes hi and hj ,
which can be naturally defined as pairwise logistic function,

P (sij |hi,hj) =

{
σ (cos (hi,hj)) , sij = 1

1− σ (cos (hi,hj)) , sij = 0

= σ(cos (hi,hj))
sij (1− σ (cos (hi,hj)))

1−sij

(8)
where σ (h) = 1/(1 + e−αh) is adaptive sigmoid function.
Similar to logistic regression, we can see that the smaller the
Hamming distance distH (hi,hj) is, the larger the cosine
similarity cos (hi,hj) as well as the conditional probability
P (1|hi,hj) will be, implying that the image pair x̄i and
x̄j should be classified as similar; otherwise, the larger the
conditional probability P (0|hi,hj) will be, implying that
the image pair x̄i and x̄j should be classified as dissimilar.
Hence, Equation (8) is a reasonable extension of the logistic
regression classifier to the pairwise classification scenario,
which is optimal for binary similarity labels sij ∈ {0, 1}.



Since discrete optimization of Equation (6) with binary
constraints hi ∈ {−1, 1}K is very challenging, continuous
relaxation hi ∈ RK is applied to the binary constraints for
ease of optimization, as adopted by most hashing methods
[37, 42]. To control the quantization error ‖hi−sgn(hi)‖ of
continuous relaxation and close the gap between Hamming
distance and cosine distance for learning high-quality hash
codes, we propose a novel bimodal Gaussian prior for hi as

P (hi) =
1

2ε
exp

(
−1

ε

∥∥∥∥ |hi|‖hi‖
− 1√

K

∥∥∥∥2
2

)
, (9)

where ε is the diversity parameter of bimodal Gaussian dis-
tribution, and 1 ∈ RK is the vector of ones with norm

√
K.

By taking Equations (8) and (9) into the MAP estimation
in Equation (6), we obtain the optimization problem of the
hash encoder F for learning compact hash codes as follows

min
F

LF =
∑
sij∈S

wij log (1 + exp (α cos (hi,hj)))

−
∑
sij∈S

wijsijα cos (hi,hj)

− β
N+M∑
i=1

cos (|hi| ,1),

(10)

β is the parameter to balance the weight between the cosine
cross-entropy loss in the first and second rows of Eq. (10)
and the cosine quantization loss in the third row of (10).

3.3. HashGAN Optimization

This paper establishes deep learning to hash for images
with pairwise similarity information, which constitutes two
key components: Pair Conditional Wasserstein GAN (PC-
WGAN) for generating nearly real images and Deep Hash
Encoder for generating compact hash codes for each image.
The overall optimization problem is a unified integration of
the PC-WGAN objective in Equations (4) (5) and the Deep
Hash Encoder objective in Equation (10). As the proposed
HashGAN architecture is a variant of GANs, the two-player
minimax game mechanism is adopted for the optimization.
The optimization problems for discriminator D, generator
G and hash encoder F are respectively computed as follows

min
D,C

LF + λLD,C ,

min
G,V

LF + λLG,V ,

min
F

LF ,

(11)

where λ is a parameter to trade of the importance of deep
hash encoder and PC-WGAN. The network parameters can
be efficiently optimized through standard back-propagation
using automatic differentiation techniques by TensorFlow.

Finally, we obtain hash code for each image by simple
binarization h← sgn(h), where sgn(·) is the sign function.
Through the minimax optimization in Equation (11), we can
synthesize nearly real images with pairwise information by
the proposed PC-WGAN, and generate nearly lossless hash
codes by similarity-preserving learning and quantization er-
ror minimization from both real and synthetic images. It is
worth noting that, we can alleviate the difficulty in learning
with insufficient supervised information by using both real
and synthetic data for deep learning to hash, which yields
higher quality hash codes for improved search performance.

4. Experiments
We evaluate the efficacy of the proposed HashGAN ap-

proach with state-of-the-art shallow and deep hashing meth-
ods on three benchmark datasets. Codes and configurations
will be available at: https://github.com/thuml.

4.1. Setup

NUS-WIDE [7] is a public image dataset which con-
tains 269,648 images in the 81 ground truth categories. We
follow similar experimental protocols in [42, 6], and ran-
domly sample 5,000 images as the query points, with the
remaining images used as the database and randomly sam-
ple 10,000 images from the database as the training points.

CIFAR-10 is a public dataset with 60,000 images in 10
classes. We follow protocol in [5] to randomly select 100
images per class as the query set, 500 images per class as
the training set, and the rest images are used as the database.

MS-COCO [23] is a widely-used image dataset for im-
age recognition, segmentation and captioning. The current
release contains 82,783 training images and 40,504 valida-
tion images, where each image is labeled by some of the
80 semantic concepts. We randomly sample 5,000 images
as query points, with the rest used as the database, and ran-
domly sample 10,000 images from the database for training.

Following standard evaluation protocol as previous work
[40, 20, 42, 6], the similarity information for hash function
learning and for ground-truth evaluation is constructed from
image labels: if two images i and j share at least one label,
they are similar and sij = 1, otherwise they are dissimilar
and sij = 0. Though we use the ground truth image labels
to construct the similarity information, the proposed Hash-
GAN can learn compact binary hash codes when only the
similarity information is available, which is more general
than many label-information based hashing methods [38, 3].

We compare retrieval performance of HashGAN with
eight state-of-the-art hashing methods, including supervised
shallow hashing methods BRE [19], ITQ-CCA [13], KSH
[25], SDH [34], and supervised deep hashing methods
CNNH [40], DNNH [20], DHN [42] and HashNet [6]. We
evaluate retrieval quality based on four standard evaluation
metrics: Mean Average Precision (MAP), Precision-Recall

https://github.com/thuml


Table 1. Mean Average Precision (MAP) of Hamming Ranking for Different Number of Bits on the Three Image Datasets

Method NUS-WIDE CIFAR-10 MS-COCO
16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

ITQ-CCA [13] 0.460 0.405 0.373 0.347 0.354 0.414 0.449 0.462 0.566 0.562 0.530 0.502
BRE [19] 0.503 0.529 0.548 0.555 0.370 0.438 0.468 0.491 0.592 0.622 0.630 0.634
KSH [25] 0.551 0.582 0.612 0.635 0.524 0.558 0.567 0.569 0.521 0.534 0.534 0.536
SDH [34] 0.588 0.611 0.638 0.667 0.461 0.520 0.553 0.568 0.555 0.564 0.572 0.580

CNNH [40] 0.570 0.583 0.593 0.600 0.476 0.472 0.489 0.501 0.564 0.574 0.571 0.567
DNNH [20] 0.598 0.616 0.635 0.639 0.559 0.558 0.581 0.583 0.593 0.603 0.605 0.610
DHN [42] 0.637 0.664 0.669 0.671 0.568 0.603 0.621 0.635 0.677 0.701 0.695 0.694

HashNet [6] 0.662 0.699 0.711 0.716 0.643 0.667 0.675 0.687 0.687 0.718 0.730 0.736
HashGAN 0.715 0.737 0.744 0.748 0.668 0.731 0.735 0.749 0.697 0.725 0.741 0.744

curves (PR), Precision curves within Hamming distance 2
(P@H≤2), and Precision curves with respect to the num-
bers of top returned samples (P@N). For direct comparison
to published results, all methods use identical training and
test sets. We follow HashNet [6] and DHN [42] and adopt
MAP@5000 for NUS-WIDE dataset, MAP@5000 for MS-
COCO dataset, and MAP@54000 for CIFAR-10 dataset.

For shallow hashing methods, we use as image features
the 4096-dimensional DeCAF7 features [9]. For deep hash-
ing methods, we use as input the original images, and adopt
AlexNet [18] as the backbone architecture. We follow [15]
and adopt a four-layer ResNet [16] architecture for the dis-
criminator and generator in HashGAN, which is proved to
generate high quality images with 64× 64 pixels. We adopt
AlexNet [18] as the hash encoder, fine-tune all layers but
the last one copied from the pre-trained AlexNet. As the last
layer is trained from scratch, we set its learning rate to be 10
times that of the lower layers. We use mini-batch stochastic
gradient descent (SGD) with 0.9 momentum as the solver,
and cross-validate the learning rate from 10−5 to 10−2 with
a multiplicative step-size 10

1
2 . We fix the mini-batch size of

images as 256 and the weight decay parameter as 0.0005.
We cross-validate the dimension of the embedding vector v,
and observe that fixing this hyper-parameter as 32 is enough
to achieve satisfiable results. Also, HashGAN is not sensi-
tive to different dimensions given that the dimension of v is
large enough, e.g. 32. We select the parameters of all com-
parison methods through cross-validation on training data.

4.2. Results

The MAP results of all methods are demonstrated in Ta-
ble 1, which shows that the proposed HashGAN substan-
tially outperforms all the comparison methods by large mar-
gins. Specifically, compared to SDH, the best shallow hash-
ing method with deep features as input, HashGAN achieves
absolute increases of 11.0%, 19.5% and 15.9% in average
MAP on NUS-WIDE, CIFAR-10, and MS-COCO respec-
tively. HashGAN outperforms HashNet, the state-of-the-art
deep hashing method, by large margins of 3.9%, 5.3% and
0.9% in average MAP on the three datasets, respectively.

The MAP results reveal several interesting insights. (1)
Shallow hashing methods cannot learn discriminative deep
representations and compact hash codes through end-to-end
framework, which explains the fact that they are surpassed
by deep hashing methods. (2) Deep hashing methods DHN
and HashNet learn less lossy hash codes by jointly preserv-
ing similarity information and controlling the quantization
error, which significantly outperform pioneering methods
CNNH and DNNH without reducing the quantization error.

The proposed HashGAN improves substantially from
the state-of-the-art HashNet by two important perspectives:
(1) HashGAN integrates a novel Pair Conditional Wasser-
stein GAN (PC-WGAN) to synthesize nearly real images as
training data, which substantially increases the diversity of
training data and alleviates the technical difficulty of insuf-
ficient supervised information in many real applications. (2)
HashGAN adopts new cosine cross-entropy loss and cosine
quantization loss, which can approximate the Hamming dis-
tance more accurately to learn nearly lossless hash codes.

The performance in Precision within Hamming radius
2 (P@H≤2) is very important for efficient image retrieval
since such Hamming ranking only requires O(1) time cost
for each query, which enables really fast pruning. As shown
in Figures 2(a), 3(a) and 4(a), HashGAN achieves the high-
est P@H≤2 results on all three benchmark datasets using
different numbers of bits. This validates that HashGAN can
learn compacter hash codes than all comparison methods
to establish more efficient and accurate Hamming ranking.
When using longer hash codes, the Hamming space will be-
come higher-dimensional and more sparse such that fewer
data points will fall in the Hamming ball within radius 2.
This explains why most existing hashing methods perform
worse in terms of P@H≤2 criterion with longer hash codes.

The retrieval performance in terms of Precision-Recall
curves (PR) and Precision curves with respect to different
numbers of top returned samples (P@N) are demonstrated
in Figures 2(b), 3(b), 4(b) and 2(c), 3(c), 4(c), respectively.
The proposed HashGAN significantly outperforms all com-
parison methods by large margins under these two evalua-
tion metrics. In particular, HashGAN achieves much higher
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Figure 2. The experimental results of HashGAN and comparison methods on the NUS-WIDE dataset under three evaluation metrics.
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Figure 3. The experimental results of HashGAN and comparison methods on the CIFAR-10 dataset under three evaluation metrics.
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Figure 4. The experimental results of HashGAN and comparison methods on the MS-COCO dataset under three evaluation metrics.

precision at lower recall levels or smaller number of top
samples. This is very desirable for precision-first retrieval,
which is widely implemented in practical retrieval systems.

4.3. Analysis

4.3.1 Ablation Study

We investigate four variants of HashGAN: (1) HashGAN-B
is the HashGAN variant without binarization (h← sgn(h)
is not performed), which may serve as the upper bound of
retrieval performance; (2) HashGAN-Q is the HashGAN
variant without using the proposed quantization loss (10), in
other words β = 0; (3) HashGAN-C is the HashGAN vari-
ant by replacing the cosine cross-entropy loss in (10) with
the widely-used inner-product cross-entropy loss [42, 6];
(4) HashGAN-G is the HashGAN variant by removing the
proposed Pair Conditional Wasserstein GAN (PC-WGAN),
i.e. only the hash encoder is trained to generate hash codes
and λ = 0. The MAP results with respect to different code
lengths on three benchmark datasets are reported in Table 2.

Pair Conditional Wasserstein GAN. Table 2 shows that
HashGAN significantly outperforms HashGAN-G by large
margins of 2.5%, 3.8% and 1.8% in average MAP on three
datasets, respectively. Without generating high-quality and
nearly real synthetic images using PC-WGAN, the diversity
of training images for deep learning to hash may be limited,
which will lead to overfitting when the pairwise similarity
information is insufficient and to worse search performance.
The proposed PC-WGAN turns out to be the most important
underpinning, which helps HashGAN achieve the state-of-
the-art retrieval performance in various evaluation metrics.
Besides, we feed the images generated by PC-WGAN to the
best baselines DHN [42] and HashNet [6], which can also
outperform the traditional methods by 2.0% on average.

Cosine Cross-Entropy Loss. Table 2 shows that Hash-
GAN outperforms HashGAN-C by 2.0%, 2.5% and 1.9% in
average MAP on the three datasets. HashGAN-C uses the
widely-used inner-product cross-entropy loss [42, 6] which
achieves state-of-the-art results on previous retrieval tasks.
In real search engines, cosine similarity is widely used to



Table 2. Mean Average Precision (MAP) Results of HashGAN and Its Variants HashGAN-B, HashGAN-Q, HashGAN-C, and HashGAN-G

Method NUS-WIDE CIFAR-10 MS-COCO
16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

HashGAN-B 0.745 0.758 0.773 0.788 0.693 0.748 0.754 0.768 0.723 0.748 0.754 0.766
HashGAN 0.715 0.737 0.744 0.748 0.668 0.731 0.735 0.749 0.697 0.725 0.741 0.744

HashGAN-Q 0.697 0.718 0.727 0.736 0.646 0.713 0.722 0.731 0.667 0.698 0.714 0.722
HashGAN-C 0.703 0.709 0.723 0.727 0.659 0.703 0.708 0.713 0.676 0.713 0.720 0.723
HashGAN-G 0.693 0.713 0.715 0.721 0.653 0.681 0.693 0.702 0.678 0.711 0.721 0.726
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Figure 5. The t-SNE visualizations of the hash codes respectively
learned by HashGAN and HashNet on the CIFAR-10 dataset.

mitigate the diversity of vector lengths and improve retrieval
quality, while it has not been integrated with cross-entropy
loss for supervised hash learning [37]. We propose a novel
cosine cross-entropy loss (10) based on cosine similarity,
which can better approximate the Hamming distance and
preserve the similarity information of training image pairs.

Cosine Quantization Loss. By jointly optimizing the
cosine cross-entropy loss and the cosine quantization loss
over deep representations of both real and synthetic images,
HashGAN incurs small average MAP decreases of 3.0%,
2.0%, and 2.6% when binarizing continuous representations
of HashGAN-B. In contrast, without optimizing the cosine
quantization loss (10), HashGAN-Q suffers from very large
MAP decreases of 4.7%, 3.8%, and 5.3%, and substantially
underperforms HashGAN. These results in Table 2 validate
that the cosine quantization loss (10) can effectively reduce
the binarization error and yield nearly lossless hash coding.

4.3.2 Visualization Study

Visualization of Hash Codes by t-SNE. Figure 5 shows
the t-SNE visualizations [35] of the hash codes learned by
the proposed HashGAN approach and the best deep hashing
method HashNet [6] on the CIFAR-10 dataset. We observe
that the hash codes learned by HashGAN exhibit clear dis-
criminative structures where the hash codes in different cat-
egories are well separated, while the hash codes generated
by HashNet exhibit relative vague structures. This validates
that by introducing the novel pair conditional WGAN into
deep hashing, the hash codes generated through the pro-
posed HashGAN are more discriminative than that gener-
ated by HashNet, enabling more accurate image retrieval.

Visualization of Synthetic Images by HashGAN. Fig-
ure 6 illustrates the per-class image examples on CIFAR-10
dataset, which are synthetic images generated by HashGAN
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(left) and real images randomly selected from the dataset
(right). We can observe that the synthetic images are nearly
real and semantically relevant to each class but are much
more diverse, which can improve the quality of hash codes.

Figure 7 illustrates synthetic (left) and real (right) image
samples on NUS-WIDE, which is a multi-label (81 labels)
dataset with high-resolution images and is more difficult to
generate high-quality images. In both cases, HashGAN can
generate plausible images to improve retrieval performance.

5. Conclusion
This paper tackles deep learning to hash with insufficient

similarity information by image synthesis from generative
models. The proposed HashGAN can synthesize nearly real
images conditioned on the pairwise similarity information,
with more diverse synthesized images to improve the qual-
ity of compact binary hash codes. Extensive empirical re-
sults demonstrate that HashGAN can yield state-of-the-art
multimedia retrieval performance on standard benchmarks.
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