Deep Transfer Learning

Mingsheng Long

School of Software National Engineering Lab for Big Data Software Tsinghua University

https://github.com/thuml

Outline

- Deep Transfer Learning
- 2 Problem 1: $P(X) \neq Q(X)$
- 3 Problem 2: $P(X, Y) \neq Q(X, Y)$
 - Joint Adaptation Network (JAN)
 - Conditional Domain Adversarial Network (CDAN)
- 4 Evaluation

Deep Learning

Learner: $f: x \to y$ Distribution: $(x,y) \sim P(x,y)$

bird mammal

fish

tree

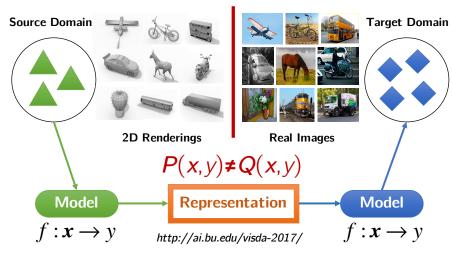
flower

.....

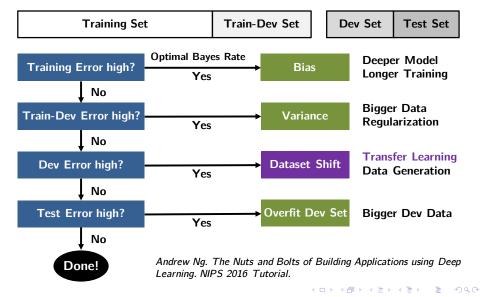
Error Bound:
$$\epsilon_{\text{test}} \leq \hat{\epsilon}_{\text{train}} + \sqrt{\frac{\text{complexity}}{n}}$$

Deep Transfer Learning

ullet Deep learning across domains of different distributions P
eq Q

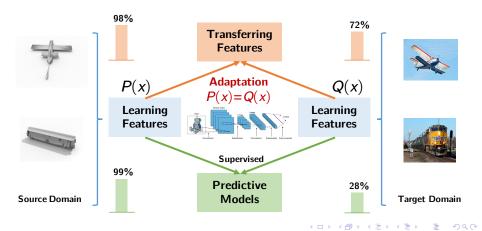


Deep Transfer Learning: Why?



Deep Transfer Learning: How?

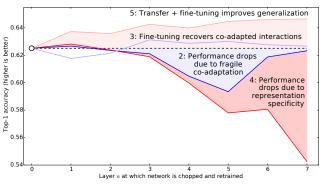
- ullet Learning predictive models on transferable features s.t. $P(\mathbf{x}) = Q(\mathbf{x})$
- Distribution matching: MMD (ICML'15), GAN (ICML'15, JMLR'16)



How Transferable Are Deep Features?

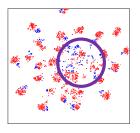
Transferability is restricted by (Yosinski et al. 2014; Glorot et al. 2011)

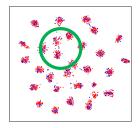
- ullet Specialization of higher layer neurons to original task (new task \downarrow)
- Optimization difficulty in splitting nets between co-adapted neurons
- Disentangling of variations in higher layers enlarges task discrepancy
- Transferability of features decreases while task discrepancy increases



Distribution Mismatch

- Marginal distribution mismatch: $P(X) \neq Q(X)$
- Conditional distribution mismatch: $P(Y|X) \neq Q(Y|X)$





$$P(x) \neq Q(x)$$

$$P(y|x) \neq Q(y|x)$$

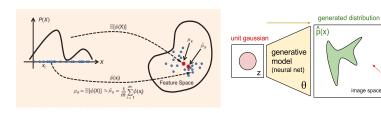
$$P(\mathbf{x}) \approx Q(\mathbf{x})$$

$$P(\mathbf{y}|\mathbf{x}) \neq Q(\mathbf{y}|\mathbf{x})$$

$$\begin{array}{ll} P(\mathbf{x}) \neq Q(\mathbf{x}) & P(\mathbf{x}) \approx Q(\mathbf{x}) & P(\mathbf{x}) \approx Q(\mathbf{x}) \\ P(\mathbf{y}|\mathbf{x}) \neq Q(\mathbf{y}|\mathbf{x}) & P(\mathbf{y}|\mathbf{x}) \neq Q(\mathbf{y}|\mathbf{x}) & P(\mathbf{y}|\mathbf{x}) \approx Q(\mathbf{y}|\mathbf{x}) \end{array}$$

Distribution Matching

- Marginal distribution mismatch: $P(X) \neq Q(X)$
- Conditional distribution mismatch: $P(Y|X) \neq Q(Y|X)$



Kernel Embedding

Adversarial Learning

Song et al. Kernel Embeddings of Conditional Distributions. **IEEE**, 2013. Goodfellow et al. Generative Adversarial Networks. **NIPS** 2014.

◆ロ → ◆部 → ◆き → をき り へ ○

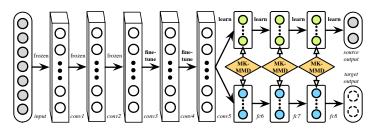
true data distribution

 $\Lambda p(x)$

Outline

- Deep Transfer Learning
- 2 Problem 1: $P(X) \neq Q(X)$
- 3 Problem 2: $P(X, Y) \neq Q(X, Y)$
 - Joint Adaptation Network (JAN)
 - Conditional Domain Adversarial Network (CDAN)
- 4 Evaluation

Deep Adaptation Network (DAN)¹



Deep adaptation: match distributions in multiple domain-specific layers Optimal matching: maximize two-sample test power by multiple kernels

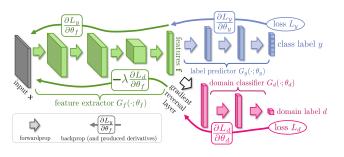
$$d_k^2(P,Q) \triangleq \left\| \mathbf{E}_P\left[\phi\left(\mathbf{x}^s\right)\right] - \mathbf{E}_Q\left[\phi\left(\mathbf{x}^t\right)\right] \right\|_{\mathcal{H}_k}^2 \tag{1}$$

$$\min_{\theta \in \Theta} \max_{k \in \mathcal{K}} \frac{1}{n_a} \sum_{i=1}^{n_a} J(\theta(\mathbf{x}_i^a), y_i^a) + \lambda \sum_{\ell=l_1}^{l_2} d_k^2 \left(\mathcal{D}_s^{\ell}, \mathcal{D}_t^{\ell}\right)$$
(2)

M. Long (Tsinghua) Deep Transfer Learning March 14, 2018 11 / 32

 $^{^1}$ Long et al. Learning Transferable Features with Deep Adaptation Networks. IEML '15. 990

Domain Adversarial Neural Network (DANN)²



Adversarial adaptation: learning features indistinguishable across domains

$$E\left(\theta_{f}, \theta_{y}, \theta_{d}\right) = \sum_{\mathbf{x}_{i} \in \mathcal{D}_{s}} L_{y}\left(G_{y}\left(G_{f}\left(\mathbf{x}_{i}\right)\right), y_{i}\right) - \lambda \sum_{\mathbf{x}_{i} \in \mathcal{D}_{s} \cup \mathcal{D}_{t}} L_{d}\left(G_{d}\left(G_{f}\left(\mathbf{x}_{i}\right)\right), d_{i}\right)$$
(3)

$$(\hat{\theta}_f, \hat{\theta}_y) = \arg\min_{\theta_f, \theta_y} E(\theta_f, \theta_y, \theta_d) \quad (\hat{\theta}_d) = \arg\max_{\theta_d} E(\theta_f, \theta_y, \theta_d)$$
(4)

March 14, 2018

Residual Transfer Network (RTN)³



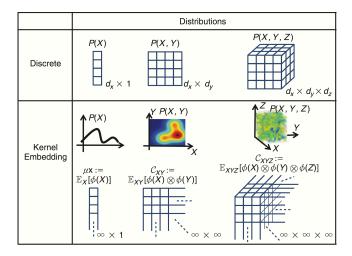
³Long et al. Unsupervised Domain Adaptation with Residual Transfer Networks: NIP\$ '16: a @

M. Long (Tsinghua) Deep Transfer Learning March 14, 2018 13 / 32

Outline

- Deep Transfer Learning
- 2 Problem 1: $P(X) \neq Q(X)$
- 3 Problem 2: $P(X, Y) \neq Q(X, Y)$
 - Joint Adaptation Network (JAN)
 - Conditional Domain Adversarial Network (CDAN)
- 4 Evaluation

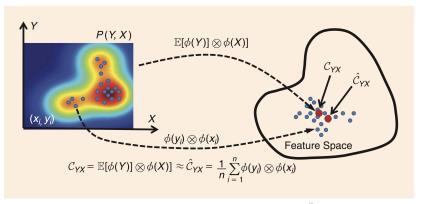
Kernel Embedding of Distributions



Le Song et al. Kernel Embeddings of Conditional Distributions. IEEE, 2013.

M. Long (Tsinghua) Deep Transfer Learning March 14, 2018 15 / 32

Kernel Embedding of Joint Distributions



$$C_{\mathbf{X}^{1:m}}(P) \triangleq \mathbb{E}_{\mathbf{X}^{1:m}} \left[\bigotimes_{\ell=1}^{m} \phi^{\ell}(\mathbf{X}^{\ell}) \right] \approx \widehat{C}_{\mathbf{X}^{1:m}} = \frac{1}{n} \sum_{i=1}^{n} \bigotimes_{\ell=1}^{m} \phi^{\ell}(\mathbf{x}_{i}^{\ell})$$
 (5)

Le Song et al. Kernel Embeddings of Conditional Distributions. IEEE, 2013.

M. Long (Tsinghua) Deep Transfer Learning March 14, 2018 16 / 32

Joint Maximum Mean Discrepancy (JMMD)

Distance between *embeddings* of $P(\mathbf{Z}^{s1}, \dots, \mathbf{Z}^{s|\mathcal{L}|})$ and $Q(\mathbf{Z}^{t1}, \dots, \mathbf{Z}^{t|\mathcal{L}|})$

$$D_{\mathcal{L}}(P,Q) \triangleq \left\| \mathcal{C}_{\mathbf{Z}^{s,1:|\mathcal{L}|}}(P) - \mathcal{C}_{\mathbf{Z}^{t,1:|\mathcal{L}|}}(Q) \right\|_{\otimes_{\ell=1}^{|\mathcal{L}|}\mathcal{H}^{\ell}}^{2}.$$
 (6)

$$\widehat{D}_{\mathcal{L}}(P,Q) = \frac{1}{n_s^2} \sum_{i=1}^{n_s} \sum_{j=1}^{n_s} \prod_{\ell \in \mathcal{L}} k^{\ell} \left(\mathbf{z}_i^{s\ell}, \mathbf{z}_j^{s\ell} \right)$$

$$+ \frac{1}{n_t^2} \sum_{i=1}^{n_t} \sum_{j=1}^{n_t} \prod_{\ell \in \mathcal{L}} k^{\ell} \left(\mathbf{z}_i^{t\ell}, \mathbf{z}_j^{t\ell} \right)$$

$$- \frac{2}{n_s n_t} \sum_{i=1}^{n_s} \sum_{j=1}^{n_t} \prod_{\ell \in \mathcal{L}} k^{\ell} \left(\mathbf{z}_i^{s\ell}, \mathbf{z}_j^{t\ell} \right).$$

$$(7)$$

Theorem (Two-Sample Test (Gretton et al. 2012))

• P = Q if and only if $\widehat{D}_{\mathcal{L}}(P,Q) = 0$ (In practice, $\widehat{D}_{\mathcal{L}}(P,Q) < \varepsilon$)

M. Long (Tsinghua)

How to Understand JMMD?

- Set last-layer features $\mathbf{Z} = \mathbf{Z}^{L-1}$, classifier predictions $\mathbf{Y} = \mathbf{Z}^L \in \mathbb{R}^C$
- We can understand JMMD(**Z**, **Y**) by simplifying it to linear kernel
- This interpretation assumes classifier predictions Y be one-hot vector

$$\widehat{D}_{\mathcal{L}}(P,Q) \triangleq \left\| \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \mathbf{z}_{i}^{s} \otimes \mathbf{y}_{i}^{s} - \frac{1}{n_{t}} \sum_{j=1}^{n_{t}} \mathbf{z}_{j}^{t} \otimes \mathbf{y}_{j}^{t} \right\|^{2}$$

$$= \sum_{c=1}^{C} \left\| \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \mathbf{y}_{i,c}^{s} \mathbf{z}_{i}^{s} - \frac{1}{n_{t}} \sum_{j=1}^{n_{t}} \mathbf{y}_{j,c}^{t} \mathbf{z}_{j}^{t} \right\|^{2}$$

$$\approx \sum_{c=1}^{C} \widehat{D}\left(\frac{P_{Z|y=c}}{Q_{Z|y=c}} \right)$$
(8)

- Equivalent to matching P and Q conditioned on each class
- JMMD process with continuous softmax activations (probability)

18 / 32

M. Long (Tsinghua)

Connection to Wasserstein-GAN (WGAN)

Different function spaces, and different powers in comparing distributions

Wasserstein distance

$$D_{W}\left(P,Q\right) \triangleq \sup_{\|\phi\|_{L} \leq 1} \left(\mathbb{E}_{\mathbf{Z}^{s}}\left[\phi\left(\mathbf{Z}^{s}\right)\right] - \mathbb{E}_{\mathbf{Z}^{t}}\left[\phi\left(\mathbf{X}^{t}\right)\right] \right) \tag{9}$$

MMD

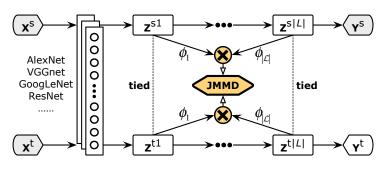
$$D_{\mathcal{H}}\left(P,Q\right) \triangleq \sup_{\|\phi\|_{\mathcal{H}} \leq 1} \left(\mathbb{E}_{\mathbf{Z}^{s}}\left[\phi\left(\mathbf{Z}^{s}\right)\right] - \mathbb{E}_{\mathbf{Z}^{t}}\left[\phi\left(\mathbf{Z}^{t}\right)\right] \right) \tag{10}$$

Joint MMD (JMMD)

$$D_{\mathcal{L}}\left(P,Q\right) \triangleq \sup_{\left\|\phi^{\ell}\right\|_{\mathcal{X}} \leqslant 1} \left(\mathbb{E}_{\mathbf{Z}^{s}}\left[\bigotimes_{\ell=1}^{|\mathcal{L}|} \phi^{\ell}(\mathbf{Z}^{s\ell})\right] - \mathbb{E}_{\mathbf{Z}^{t}}\left[\bigotimes_{\ell=1}^{|\mathcal{L}|} (\mathbf{Z}^{t\ell})\right]\right) \tag{11}$$

◆ロト ◆部 ▶ ◆恵 ▶ ◆恵 ▶ ・恵 ・ かへで

Joint Adaptation Network (JAN)⁴



Joint adaptation: match joint distributions of multiple task-specific layers

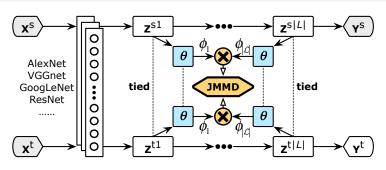
$$\min_{f} \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} J(f(\mathbf{x}_{i}^{s}), \mathbf{y}_{i}^{s}) + \lambda \widehat{D}_{\mathcal{L}}(P, Q)$$
(12)

$$D_{\mathcal{L}}(P,Q) \triangleq \left\| \mathcal{C}_{\mathbf{Z}^{s,1:|\mathcal{L}|}}(P) - \mathcal{C}_{\mathbf{Z}^{t,1:|\mathcal{L}|}}(Q) \right\|_{\otimes_{\ell=1}^{|\mathcal{L}|} \mathcal{H}^{\ell}}^{2}$$
(13)

M. Long (Tsinghua) Deep Transfer Learning March 14, 2018 20 / 32

⁴Long et al. Deep Transfer Learning with Joint Adaptation Networks. ICML '17. • 3

Adversarial Joint Adaptation Network (JAN-A)



Optimal matching: maximize JMMD as semi-parametric domain adversary

$$\min_{f} \max_{\theta} \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} J(f(\mathbf{x}_{i}^{s}), \mathbf{y}_{i}^{s}) + \lambda \widehat{D}_{\mathcal{L}}(P, Q; \theta)$$
(14)

$$\widehat{D}_{\mathcal{L}}(P,Q;\theta) = \frac{2}{n} \sum_{i=1}^{n/2} d\left(\left\{\frac{\theta^{\ell}(\mathbf{z}_{2i-1}^{s\ell}, \mathbf{z}_{2i}^{s\ell}, \mathbf{z}_{2i-1}^{t\ell}, \mathbf{z}_{2i}^{t\ell})\right\}_{\ell \in \mathcal{L}}\right) \tag{15}$$

M. Long (Tsinghua) Deep Transfer Learning March 14, 2018 21 / 32

Learning Algorithm

Linear-Time O(n) Algorithm of JMMD (Streaming Algorithm)

$$\widehat{D}_{\mathcal{L}}(P,Q) = \frac{2}{n} \sum_{i=1}^{n/2} \left(\prod_{\ell \in \mathcal{L}} k^{\ell}(\mathbf{z}_{2i-1}^{s\ell}, \mathbf{z}_{2i}^{s\ell}) + \prod_{\ell \in \mathcal{L}} k^{\ell}(\mathbf{z}_{2i-1}^{t\ell}, \mathbf{z}_{2i}^{t\ell}) \right)$$

$$- \frac{2}{n} \sum_{i=1}^{n/2} \left(\prod_{\ell \in \mathcal{L}} k^{\ell}(\mathbf{z}_{2i-1}^{s\ell}, \mathbf{z}_{2i}^{t\ell}) + \prod_{\ell \in \mathcal{L}} k^{\ell}(\mathbf{z}_{2i-1}^{t\ell}, \mathbf{z}_{2i}^{s\ell}) \right)$$

$$= \frac{2}{n} \sum_{i=1}^{n/2} d\left(\left\{ \mathbf{z}_{2i-1}^{s\ell}, \mathbf{z}_{2i}^{s\ell}, \mathbf{z}_{2i-1}^{t\ell}, \mathbf{z}_{2i}^{t\ell} \right\}_{\ell \in \mathcal{L}} \right)$$

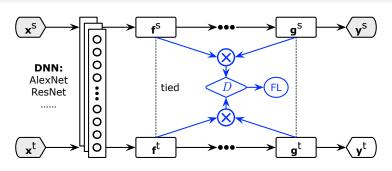
$$(16)$$

SGD: for each layer ℓ and for each quad-tuple $(\mathbf{z}_{2i-1}^{s\ell}, \mathbf{z}_{2i}^{s\ell}, \mathbf{z}_{2i-1}^{t\ell}, \mathbf{z}_{2i}^{t\ell})$

$$\nabla_{W^{\ell}} = \frac{\partial J\left(\mathbf{z}_{2i-1}^{s}, \mathbf{z}_{2i}^{s}, y_{2i-1}^{s}, y_{2i}^{s}\right)}{\partial W^{\ell}} + \lambda \frac{\partial d\left(\left\{\mathbf{z}_{2i-1}^{s\ell}, \mathbf{z}_{2i}^{s\ell}, \mathbf{z}_{2i-1}^{t\ell}, \mathbf{z}_{2i}^{t\ell}\right\}_{\ell \in \mathcal{L}}\right)}{\partial W^{\ell}}$$
(17)

M. Long (Tsinghua) Deep Transfer Learning March 14, 2018 22 / 32

Multilinear Conditioning⁵



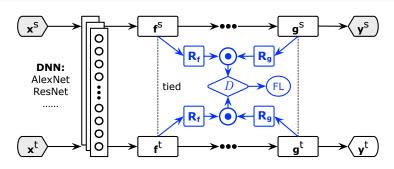
$$\min_{G} E(G) - \lambda E(D, G)
\min_{D} E(D, G)$$
(18)

$$E(D,G) = -\frac{1}{n_s} \sum_{i=1}^{n_s} \log \left(D\left(\mathbf{f}_i^s \otimes \mathbf{g}_i^s\right) \right) - \frac{1}{n_t} \sum_{j=1}^{n_t} \log \left(1 - D\left(\mathbf{f}_j^t \otimes \mathbf{g}_j^t\right) \right)$$
(19)

M. Long (Tsinghua) Deep Transfer Learning March 14, 2018 23 / 32

⁵Long et al. Conditional Adversarial Domain Adaptation. arXiv '173 > 4 3 > 4 3 > 9 9 9

Randomized Multilinear Conditioning



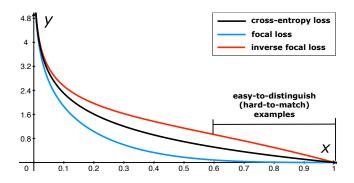
$$T_{\otimes}(\mathbf{f}, \mathbf{g}) = \mathbf{f} \otimes \mathbf{g} \tag{20}$$

$$T_{\odot}(\mathbf{f}, \mathbf{g}) = \frac{1}{\sqrt{d}} (\mathbf{R_f f}) \odot (\mathbf{R_g g})$$
 (21)

$$\phi(\mathbf{h}) = \begin{cases} T_{\otimes}(\mathbf{f}, \mathbf{g}) & \text{if } d_f \times d_g \leqslant 4096 \\ T_{\odot}(\mathbf{f}, \mathbf{g}) & \text{otherwise} \end{cases}$$
 (22)

M. Long (Tsinghua) Deep Transfer Learning March 14, 2018 24 / 32

Inverse Focal Discriminator



$$E(D,G) = -\frac{1}{n_s} \sum_{i=1}^{n_s} \exp\left(D\left(\phi\left(\mathbf{h}_i^s\right)\right)\right) \log\left(D\left(\phi\left(\mathbf{h}_i^s\right)\right)\right) - \frac{1}{n_t} \sum_{j=1}^{n_t} \exp\left(1 - D\left(\phi\left(\mathbf{h}_j^t\right)\right)\right) \log\left(1 - D\left(\phi\left(\mathbf{h}_j^t\right)\right)\right)$$
(23)

25 / 32

M. Long (Tsinghua) Deep Transfer Learning March 14, 2018

Optimization Problem

$$\min_{G} \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} L(G(\mathbf{x}_{i}^{s}), \mathbf{y}_{i}^{s})
+ \frac{\lambda}{n_{s}} \sum_{i=1}^{n_{s}} \exp(D(\phi(\mathbf{h}_{i}^{s}))) \log(D(\phi(\mathbf{h}_{i}^{s})))
+ \frac{\lambda}{n_{t}} \sum_{j=1}^{n_{t}} \exp(1 - D(\phi(\mathbf{h}_{i}^{t}))) \log(1 - D(\phi(\mathbf{h}_{j}^{t})))
\max_{D} \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \exp(D(\phi(\mathbf{h}_{i}^{s}))) \log(D(\phi(\mathbf{h}_{i}^{s})))
+ \frac{1}{n_{t}} \sum_{i=1}^{n_{t}} \exp(1 - D(\phi(\mathbf{h}_{i}^{t}))) \log(1 - D(\phi(\mathbf{h}_{j}^{t})))$$
(24)

Outline

- Deep Transfer Learning
- 2 Problem 1: $P(X) \neq Q(X)$
- 3 Problem 2: $P(X, Y) \neq Q(X, Y)$
 - Joint Adaptation Network (JAN)
 - Conditional Domain Adversarial Network (CDAN)
- Evaluation

Datasets

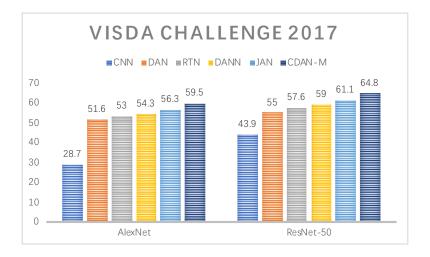
Results

Table: Accuracy (%) on Office-31 for unsupervised domain adaptation

Method	$A \rightarrow W$	$D \to W$	$W \rightarrow D$	$A \rightarrow D$	$D \to A$	$W \rightarrow A$	Avg
AlexNet	61.6 ± 0.5	95.4 ± 0.3	99.0 ± 0.2	63.8 ± 0.5	51.1 ± 0.6	49.8 ± 0.4	70.1
TCA	61.0 ± 0.0	93.2 ± 0.0	95.2 ± 0.0	60.8 ± 0.0	51.6 ± 0.0	50.9 ± 0.0	68.8
GFK	60.4 ± 0.0	95.6 ± 0.0	95.0 ± 0.0	60.6 ± 0.0	52.4 ± 0.0	48.1 ± 0.0	68.7
DAN	68.5 ± 0.5	96.0 ± 0.3	99.0 ± 0.3	67.0 ± 0.4	54.0 ± 0.5	53.1 ± 0.5	72.9
RTN	73.3 ± 0.3	96.8 ± 0.2	99.6 ± 0.1	71.0 ± 0.2	50.5 ± 0.3	51.0 ± 0.1	73.7
DANN	73.0 ± 0.5	96.4 ± 0.3	99.2 ± 0.3	72.3 ± 0.3	53.4 ± 0.4	51.2 ± 0.5	74.3
ADDA	73.5 ± 0.6	96.2 ± 0.4	98.8 ± 0.4	71.6 ± 0.4	54.6 ± 0.5	53.5 ± 0.6	74.7
JAN	74.9 ± 0.3	96.6 ± 0.2	99.5 ± 0.2	71.8 ± 0.2	58.3 ± 0.3	55.0 ± 0.4	76.0
CDAN-RM	77.9 ± 0.3	96.9 ± 0.2	$100.0 \pm .0$	74.6 ± 0.2	55.1 ± 0.3	57.5 ± 0.4	77.0
CDAN-M	77.6 ± 0.2	97.2 ± 0.1	$100.0 \pm .0$	73.0 ± 0.1	57.3 ± 0.2	56.1 ± 0.3	76.9
ResNet-50	68.4±0.2	96.7 ± 0.1	99.3±0.1	68.9 ± 0.2	62.5±0.3	60.7 ± 0.3	76.1
TCA	72.7 ± 0.0	96.7 ± 0.0	99.6 ± 0.0	74.1 ± 0.0	61.7 ± 0.0	60.9 ± 0.0	77.6
GFK	72.8 ± 0.0	95.0 ± 0.0	98.2 ± 0.0	74.5 ± 0.0	63.4 ± 0.0	61.0 ± 0.0	77.5
DAN	80.5 ± 0.4	97.1 ± 0.2	99.6 ± 0.1	78.6 ± 0.2	63.6 ± 0.3	62.8 ± 0.2	80.4
RTN	84.5 ± 0.2	96.8 ± 0.1	99.4 ± 0.1	77.5 ± 0.3	66.2 ± 0.2	64.8 ± 0.3	81.6
DANN	82.0 ± 0.4	96.9 ± 0.2	99.1 ± 0.1	79.7 ± 0.4	68.2 ± 0.4	67.4 ± 0.5	82.2
ADDA	86.2 ± 0.5	96.2 ± 0.3	98.4 ± 0.3	77.8 ± 0.3	69.5 ± 0.4	68.9 ± 0.5	82.9
JAN	85.4 ± 0.3	97.4 ± 0.2	99.8 ± 0.2	84.7 ± 0.3	68.6 ± 0.3	70.0 ± 0.4	84.3
CDAN-RM	93.0 ± 0.2	98.4 ± 0.2	$100.0 \pm .0$	89.2 ± 0.3	70.2 ± 0.4	69.4 ± 0.4	86.7
CDAN-M	93.1 ± 0.1	98.6 ± 0.1	$100.0 \pm .0$	93.4 ± 0.2	71.0 ± 0.3	70.3 ± 0.3	87.7

29 / 32

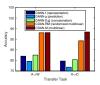
Results



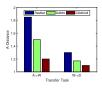
Analysis

Table: Accuracy (%) of CDAN variants for unsupervised domain adaptation

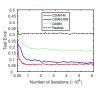
Method	$A \rightarrow W$	$D \to W$	$W \rightarrow D$	$A \rightarrow D$	$D \to A$	$W \rightarrow A$	Avg
CDAN-RM (bernoulli)	87.8±0.3	97.2±0.3	99.4 ± 0.1	85.1±0.4	70.9 ±0.5	71.7 ±0.5	85.3
CDAN-RM (gaussian)	88.0 ± 0.1	97.4 ± 0.1	99.7 ± 0.1	86.4 ± 0.2	70.6 ± 0.3	71.4 ± 0.3	85.6
CDAN-RM (uniform)	93.0 ± 0.2	98.4 ± 0.2	$100.0 \pm .0$	89.2 ± 0.3	70.2 ± 0.4	69.4 ± 0.4	86.7
CDAN-M (no focal loss)	91.7±0.2	98.3±0.1	100.0 ±.0	92.5±0.2	70.0±0.2	67.8±0.2	86.8
CDAN-M (focal loss)	93.1 ± 0.1	98.6 ± 0.1	$100.0 \pm .0$	93.4 ± 0.2	71.0 ± 0.3	70.3 \pm 0.3	87.7



(a) Conditioning



(b) Discrepancy



(c) Convergence

Figure: Analysis of CDAN: (a) Conditioning, (b) Discrepancy, (c) Convergence.

31 / 32

Open Problems

Heterogeneous Transfer Learning

$$\mathbf{X}_s \neq \mathbf{X}_t \vee \mathbf{Y}_s \neq \mathbf{Y}_t$$

Pixel-Level Transfer Learning

$$P(\mathbf{X}) \neq Q(\mathbf{X}) \vee P(\mathbf{Z}) \neq Q(\mathbf{Z})$$

Learning Transferable Architectures

Code available at: https://github.com/thuml/Xlearn