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Abstract

Due to its computation efficiency and retrieval quality,
hashing has been widely applied to approximate nearest
neighbor search for large-scale image retrieval, while deep
hashing further improves the retrieval quality by end-to-
end representation learning and hash coding. With compact
hash codes, Hamming space retrieval enables the most effi-
cient constant-time search that returns data points within a
given Hamming radius to each query, by hash table lookups
instead of linear scan. However, subject to the weak capa-
bility of concentrating relevant images to be within a small
Hamming ball due to mis-specified loss functions, exist-
ing deep hashing methods may underperform for Hamming
space retrieval. This work presents Deep Cauchy Hashing
(DCH), a novel deep hashing model that generates compact
and concentrated binary hash codes to enable efficient and
effective Hamming space retrieval. The main idea is to de-
sign a pairwise cross-entropy loss based on Cauchy distri-
bution, which penalizes significantly on similar image pairs
with Hamming distance larger than the given Hamming ra-
dius threshold. Comprehensive experiments demonstrate
that DCH can generate highly concentrated hash codes and
yield state-of-the-art Hamming space retrieval performance
on three datasets, NUS-WIDE, CIFAR-10, and MS-COCO.

1. Introduction
In the big data era, large-scale and high-dimensional me-

dia data has been pervasive in search engines and social
networks. To guarantee retrieval quality and computation
efficiency, approximate nearest neighbor (ANN) search has
attracted increasing attention. Parallel to the traditional in-
dexing methods [18] for candidates pruning, another advan-
tageous solution is hashing methods [31] for data compres-
sion, which transform high-dimensional media data into
compact binary codes and generate similar binary codes for
similar data items. This paper will focus on the learning
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to hash methods [31] that build data-dependent hash en-
coding schemes for efficient image retrieval, which have
shown better performance than the data-independent hash-
ing methods, e.g. Locality-Sensitive Hashing (LSH) [10].

Many learning to hash methods have been proposed to
enable efficient ANN search by Hamming ranking of com-
pact hash codes, including both supervised and unsuper-
vised methods [16, 12, 26, 9, 22, 30, 25, 24, 35]. Recently,
deep learning to hash methods [33, 17, 28, 8, 36, 19, 21, 4]
have shown that deep neural networks can enable end-to-
end representation learning and hash coding with nonlinear
hash functions. These deep learning to hash methods have
shown state-of-the-art search performance. In particular,
they prove it crucial to jointly learn similarity-preserving
representations and control quantization error of converting
continuous representations to binary codes [36, 19, 21, 4].

However, most of the existing methods are tailored to
data compression instead of candidates pruning, i.e. they
are designed to maximize retrieval performance based on
linear scan of hash codes. As linear scan is still costly even
using hash codes, we are somewhat deviating from our orig-
inal intention with hashing, that is, to maximize speedup
under acceptable accuracy. With the blossom of powerful
hashing methods for linear scan, we should now turn to the
Hamming space retrieval [9], which enables the most effi-
cient constant-time search. In Hamming space retrieval, we
return data points within a given Hamming radius to each
query, by hash table lookups instead of linear scan. Unfor-
tunately, existing hashing methods generally lack the capa-
bility of concentrating relevant images to be within a small
Hamming ball due to the mis-specified loss functions, thus
they may underperform for Hamming space retrieval.

This work presents Deep Cauchy Hashing (DCH), a
novel deep hashing model that generates concentrated and
compact hash codes to enable efficient and effective Ham-
ming space retrieval. We propose a pairwise cross-entropy
loss based on Cauchy distribution, which penalizes signifi-
cantly on similar image pairs with Hamming distance larger
than the given Hamming radius threshold. We further pro-



pose a quantization loss based on the Cauchy distribution,
which enables learning nearly lossless hash codes. Both
loss functions can be derived in a Bayesian learning frame-
work and are well-specified to the Hamming space retrieval.
The proposed DCH model can be trained end-to-end by
back-propagation. Extensive experiments demonstrate that
DCH can generate highly concentrated and compact hash
codes and yield state-of-the-art image retrieval performance
on three datasets, NUS-WIDE, CIFAR-10, and MS-COCO.

2. Related Work
Existing hashing methods [2, 16, 12, 26, 22, 30, 25, 11,

34, 35, 24] consist of unsupervised and supervised hashing.
Please refer to [31] for a comprehensive survey.

Unsupervised hashing methods learn hash functions that
encode data to binary codes by training from unlabeled data.
Typical methods include reconstruction error minimization
[27, 12, 14] and graph embedding [32, 23]. Supervised
hashing further explores supervised information (e.g. pair-
wise similarity or relevance feedback) to generate discrimi-
native and compact hash codes [16, 26, 22, 28]. Supervised
Hashing with Kernels (KSH) [22] and Supervised Discrete
Hashing (SDH) [28] generate nonlinear or discrete binary
hash codes by minimizing (maximizing) the Hamming dis-
tances across similar (dissimilar) pairs of data points.

Recently, deep learning to hash methods [33, 17, 28, 8,
36, 1, 21, 4] yield breakthrough results on image retrieval
datasets by blending the power of deep learning [15, 13]. In
particular, DHN [36] is the first end-to-end framework that
jointly preserves pairwise similarity and controls the quan-
tization error. HashNet [4] improves DHN by balancing the
positive and negative pairs in training data, and by continu-
ation technique for lower quantization error, which obtains
state-of-the-art performance on several benchmark datasets.

However, previous deep hashing methods perform un-
satisfactorily for Hamming space retrieval [9], with early
pruning to discard irrelevant data points out of Hamming
Radius 2. The reason for inefficient Hamming space re-
trieval is that their loss functions penalize little when two
similar data points have large Hamming distance. Thus they
cannot concentrate relevant data points to be within Ham-
ming radius 2. We propose a novel cross-entropy loss for
similarity-preserving learning and a novel quantization loss
for controlling hashing quality, both based on the Cauchy
distribution. To our knowledge, this work is the first en-
deavor towards deep hashing for Hamming space retrieval.

3. Deep Cauchy Hashing
In similarity retrieval systems, we are given a training set

of N points {xi}Ni=1, each represented by a D-dimensional
feature vector xi ∈ RD. Some pairs of points xi and
xj are provided with similarity labels sij , where sij = 1

if xi and xj are similar while sij = 0 if xi and xj are
dissimilar. Deep hashing learns a nonlinear hash function
f : x 7→ h ∈ {−1, 1}K from input space RD to Hamming
space {−1, 1}K using deep neural networks, which encodes
each point x into compact K-bit hash code h = f(x) such
that the similarity information conveyed in given pairs S
can be preserved in the compact hash codes. In supervised
hashing, the similarity information S = {sij} can be col-
lected from the semantic labels of data points or relevance
feedback from click-through data in online search engines.

Definition 1 (Hamming Space Retrieval). For binary codes
of K bits, the number of distinct hash buckets to examine
is N (K, r) =

∑r
k=0

(
K
k

)
, where r is the Hamming radius.

N (K, r) grows rapidly with r and when r ≤ 2, it only re-
quires O(1) time for each query to find all r-neighbors.
Hamming space retrieval refers to the retrieval scenario
that directly returns data points within Hamming radius r
to each query, by hash table lookups instead of linear scan.

This paper presents a new Deep Cauchy Hashing (DCH)
to enable efficient Hamming space retrieval in an end-to-
end framework, as shown in Figure 1. The proposed deep
architecture accepts pairwise input images {(xi,xj , sij)}
and processes them through an end-to-end pipeline of deep
representation learning and binary hash coding: (1) a con-
volutional network (CNN) for learning deep representation
of each image xi, (2) a fully-connected hash layer (fch) for
transforming the deep representation into K-bit hash code
hi ∈ {1,−1}K , (3) a novel Cauchy cross-entropy loss for
similarity-preserving learning in Hamming space, and (4) a
novel Cauchy quantization loss for controlling both the bi-
narization error and the hashing quality in Hamming space.

3.1. Deep Architecture

The architecture for Deep Cauchy Hashing is shown in
Figure 1. We extend from AlexNet [15] with five convolu-
tional layers conv1–conv5 and three fully connected layers
fc6–fc8. We replace the classifier layer fc8 with a new hash
layer fch of K hidden units, which transforms the repre-
sentation of the fc7 layer into K-dimensional continuous
code zi ∈ RK for each image xi. We obtain hash code
hi through the sign thresholding hi = sgn(zi). However,
since it is hard to optimize the sign function due to ill-posed
gradient, we adopt the hyperbolic tangent (tanh) function to
squash the continuous code zi to be within [−1, 1], which
reduces the gap between the continuous code zi and the bi-
nary hash code hi. To further guarantee the quality of hash
codes for efficient Hamming space retrieval, we preserve
the similarity between the training pairs {(xi,xj , sij) :
sij ∈ S} and control the quantization error, both performed
in the Hamming space. Towards this goal, this paper pro-
poses two novel loss functions based on the long-tailed
Cauchy distribution: a pairwise Cauchy cross-entropy loss



0

1

Cauchy
quantization

loss

Cauchy 
cross-entropy

loss

conv1
conv2

conv3
conv4 conv5

fc6 fc7
fch

input

Figure 1. The architecture of the proposed Deep Cauchy Hashing (DCH), which is comprised of four key components: (1) a convolutional
network (CNN) for learning deep representation of each image xi, (2) a fully-connected hash layer (fch) for transforming the deep repre-
sentation into K-bit hash code hi ∈ {1,−1}K , (3) a novel Cauchy cross-entropy loss for similarity-preserving learning in the Hamming
space, and (4) a novel Cauchy quantization loss for controlling both the binarization error and the hash code quality. Best viewed in color.

and a pointwise Cauchy quantization loss, both derived in
the Maximum a Posteriori (MAP) estimation framework.

3.2. Bayesian Learning Framework

In this paper, we propose a Bayesian learning framework
to perform deep hashing from similarity data by jointly pre-
serving similarity of pairwise images and controlling the
quantization error. Given training images with pairwise
similarity labels as {(xi,xj , sij) : sij ∈ S}, the logarithm
Maximum a Posteriori (MAP) estimation of the hash codes
H = [h1, . . . ,hN ] for N training images can be defined as

logP (H|S) ∝ logP (S|H)P (H)

=
∑
sij∈S

wij logP (sij |hi,hj) +

N∑
i=1

logP (hi)

(1)
where P (S|H) =

∏
sij∈S [P (sij |hi,hj)]wij is the

weighted likelihood function [6], and wij is the weight for
each training pair (xi,xj , sij), which tackles the data im-
balance problem by weighting training pairs according to
the importance of misclassifying that pair. Since similarity
label can only be sij = 1 or sij = 0, to account for the data
imbalance between similar and dissimilar pairs, we propose

wij =

{
|S| / |S1| , sij = 1

|S| / |S0| , sij = 0
(2)

where S1 = {sij ∈ S : sij = 1} is the set of similar pairs
and S0 = {sij ∈ S : sij = 0} is the set of dissimilar pairs.
For each pair, P (sij |hi,hj) is the conditional probability
of similarity label sij given a pair of hash codes hi and hj ,
which can be naturally defined by the Bernoulli distribution,

P (sij |hi,hj) =

{
σ (d (hi,hj)) , sij = 1

1− σ (d (hi,hj)) , sij = 0

= σ(d (hi,hj))
sij (1− σ (d (hi,hj)))

1−sij

(3)

where d (hi,hj) denotes the Hamming distance between
hash codes hi and hj , and σ is a well-defined probability
function to be elaborated in the next subsection.

Similar to binary-class logistic regression for pointwise
data, we see in Equation (3) that the smaller the Hamming
distance d (hi,hj) is, the larger the conditional probability
P (1|hi,hj) will be, implying that the image pair xi and xj
should be classified as similar; otherwise, the larger the con-
ditional probability P (0|hi,hj) will be, implying that the
image pair should be classified as dissimilar. Hence, Equa-
tion (3) is a reasonable extension of the binary-class logistic
regression to the pairwise classification scenario, which is a
natural solution to the binary similarity labels sij ∈ {0, 1}.

3.3. Cauchy Hash Learning

With the Bayesian learning framework, any valid prob-
ability function σ and distance function d can be used to
instantiate a specific hashing model. Previous state-of-the-
art deep hashing methods, such as DHN [36] and HashNet
[4], usually adopt generalized sigmoid function σ (x) =
1/(1 + e−αx) as the probability function. However, we dis-
cover a key misspecification problem of the generalized sig-
moid function as illustrated in Figure 2. We can observe that
the probability of generalized sigmoid function (by varying
α) stays high when the Hamming distance between hash
codes is much larger than 2 and only starts to decrease ob-
viously when the Hamming distance becomes close toK/2.
This implies that previous deep hashing methods cannot
pull the Hamming distance between the hash codes of simi-
lar data points to be smaller than 2, because the probabilities
for different Hamming distances smaller than K/2 are not
discriminative enough. This is a severe disadvantage of the
existing hashing methods, which makes efficient Hamming
space retrieval impossible. Note that, a well-specified loss
function for Hamming space retrieval should penalize sig-
nificantly for similar points with Hamming distance greater
than 2, while prior methods are misspecified for this goal.
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Figure 2. The values of Probability (a) and Loss (b) with respect to
Hamming Distance between the hash codes of similar data points
(sij = 1). Probability (Loss) based on generalized sigmoid func-
tion is very large (small) even for Hamming distance much larger
than 2, which is ill-specified for Hamming ball retrieval. As a de-
sired property, Probability based on Cauchy distribution is large
only for smaller Hamming distance; loss based on Cauchy distri-
bution significantly penalizes for Hamming distance larger than 2.

To tackle the above misspecification problem of sigmoid
function, we propose a novel probability function based on
the Cauchy distribution with many desired properties as

σ (d (hi,hj)) =
γ

γ + d (hi,hj)
, (4)

where γ is the scale parameter of the Cauchy distribution,
and the normalization constant 1

π
√
γ is omitted for clarity,

since it will not influence the final model. In Figure 2, we
can observe that the probability of the proposed Cauchy dis-
tribution decreases very fast when the Hamming distance
is small, resulting in that the similar points will be pulled
to be within small Hamming radius. The decaying speed
of the probability will be even faster by using a smaller γ,
which imposes more force to concentrate similar points to
be within small Hamming radius. Hence, the scale parame-
ter γ is very important to control the tradeoff levels between
precision and recall. By simply varying γ, we can support
diverse Hamming space retrieval scenarios with different
Hamming radiuses to give different pruning rates.

Since discrete optimization of Equation (1) with binary
constraints hi ∈ {−1, 1}K is very challenging, continuous
relaxation is applied to the binary constraints for ease of
optimization, as adopted by most previous hashing methods
[31, 36]. To control the quantization error ‖hi − sgn(hi)‖
caused by continuous relaxation and to learn high-quality
hash codes, we propose a novel prior for each hash code hi
based on a symmetric variant of the Cauchy distribution as

P (hi) =
γ

γ + d (|hi| ,1)
, (5)

where γ is the scale parameter of the symmetric Cauchy
distribution, and 1 ∈ RK is the vector of ones.

By using the continuous relaxation, we need to replace
the Hamming distance with its best approximation on con-
tinuous codes. For a pair of binary hash codes hi and hj ,

there exists a nice relationship between their Hamming dis-
tance d(hi,hj) and the normalized Euclidean distance as

d (hi,hj) =
K

4

∥∥∥∥ hi
‖hi‖

− hj
‖hj‖

∥∥∥∥2

2

=
K

2
(1− cos (hi,hj)) .

(6)

Hence this paper adopts d (hi,hj) = K
2 (1− cos (hi,hj)).

After using the continuous relaxation to ease the optimiza-
tion, the normalized Euclidean distance compares each pair
of continuous codes on a unit sphere, while the Hamming
distance compares each pair of hash codes on a unit hyper-
cube. More intuitively, the unit sphere is always a circum-
scribed sphere of the hypercube. As a desirable result, by
mitigating the diversity of code lengths, the normalized Eu-
clidean distance on continuous codes is always the upper
bound of the Hamming distance on hash codes.

By taking Equations (3) and (5) into the MAP estima-
tion framework in Equation (1), we obtain the optimization
problem of the proposed Deep Cauchy Hashing (DCH) as

min
Θ

L+ λQ, (7)

where λ is a hyper-parameter to trade-off the Cauchy cross-
entropy loss L and the Cauchy quantization loss Q, and
Θ denotes the set of network parameters to be optimized.
Specifically, the Cauchy cross-entropy loss L is derived as

L =
∑

sij∈S

wij

(
sij log

d (hi,hj)

γ
+ log

(
1 +

γ

d (hi,hj)

))
,

(8)
and similarly, the Cauchy quantization loss is derived as

Q =

N∑
i=1

log

(
1 +

d (|hi| ,1)

γ

)
, (9)

where d(·, ·) is either the Hamming distance between the
hash codes or the normalized Euclidean distance between
the continuous codes. Since the quantization error will be
controlled by the proposed Cauchy quantization loss in the
joint optimization problem (7), for ease of optimization, we
can use continuous relaxation for the hash codes hi during
training (only for training, not for testing).

Based on the MAP estimation in Equation (7), we can
enable statistically optimal learning of compact hash codes
by jointly preserving the pairwise similarity and control-
ling the quantization error. Finally, we can obtain K-bit bi-
nary codes by simple sign thresholding h← sgn(h), where
sgn(h) is the sign function on vectors that for i = 1, . . . ,K,
sgn(hi) = 1 if hi > 0, otherwise sgn(hi) = −1. It is worth
noting that, since we have minimized the quantization error
in (7) during training, this final binarization step will incur
very small loss of retrieval quality as validated empirically.



4. Experiments
We evaluate the efficacy of the proposed DCH approach

with several state-of-the-art shallow and deep hashing meth-
ods on three benchmark datasets. Codes and configurations
will be available at: https://github.com/thuml.

4.1. Setup

NUS-WIDE [5] is a benchmark dataset that contains
269,648 images from Flickr.com. Each image is man-
ually annotated by some of the 81 ground truth concepts
(categories) for evaluating retrieval models. We follow sim-
ilar experimental protocols in [36, 4], and randomly sam-
ple 5,000 images as the query points, with the remaining
images used as the database and randomly sample 10,000
images from the database as the training points.

MS-COCO [20] is a popular dataset for image recog-
nition, segmentation and captioning. The current release
contains 82,783 training images and 40,504 validation im-
ages, where each image is labeled by some of the 80 seman-
tic concepts. We randomly sample 5,000 images as query
points, with the rest used as the database, and randomly
sample 10,000 images from the database for training.

CIFAR-10 is a standard dataset with 60,000 images in
10 classes. We follow protocol in [36, 3] to randomly select
100 images per class as query set, 500 images per class as
training set, and the rest images are used as the database.

Following standard protocol as in [33, 17, 36, 4], the sim-
ilarity information for hash learning and for ground-truth
evaluation is constructed from image labels: if two images
i and j share at least one label, they are similar and sij = 1;
otherwise, they are dissimilar and sij = 0. Note that, al-
though we use the image labels to construct the similarity
information, the proposed approach DCH can learn hash
codes when only the similarity information is available. By
constructing the training data in this way, the ratio between
the number of dissimilar pairs and the number of similar
pairs is roughly 10, 5, and 1 for CIFAR-10, NUS-WIDE,
and MS-COCO, respectively. These datasets exhibit the
data imbalance phenomenon and can be used to evaluate
different hashing methods under data imbalance scenario.

We compare the retrieval performance of DCH with
eight classical or state-of-the-art hashing methods: super-
vised shallow methods ITQ-CCA [12], BRE [16], KSH
[22], and SDH [28], and supervised deep methods CNNH
[33], DNNH [17], DHN [36], and HashNet [4].

We follow standard evaluation methods for Hamming
space retrieval [9], which consists of two consecutive steps:
(1) Pruning, to return data points within Hamming radius 2
for each query using hash table lookups; (2) Scanning, to
re-rank the returned data points in ascending order of their
distances to each query using continuous codes. To evalu-
ate the effectiveness of Hamming space retrieval, we report
three standard evaluation metrics to measure the quality of

the data points within Hamming radius 2: Mean Average
Precision within Hamming Radius 2 (MAP@H≤2), Preci-
sion curves within Hamming Radius 2 (P@H≤2), and Re-
call curves within Hamming Radius 2 (R@H≤2).

Due to the potentially best efficiency, the search based on
pruning followed by re-ranking is widely-deployed in large-
scale online retrieval systems such as search engines. And
the continuous representations before the sign function are
always adopted for the re-ranking step. In the MAP@H≤2
evaluation metric, we compute the Mean Average Precision
for the re-ranked list of the data points pruned by Ham-
ming radius 2, which can measure the search quality. More
specifically, given a set of queries, we first compute the Av-
erage Precision (AP) of each query as

AP@T =

∑T
t=1 P (t) δ (t)∑T
t′=1 δ (t′)

, (10)

where T is the number of top-returned data points within
Hamming radius 2, P (t) denotes the precision of top t re-
trieved results, and δ(t) = 1 if the t-th retrieved result is
a true neighbor of the query, otherwise δ(t) = 0. Then
MAP@H≤2 is computed as the mean of average precisions
for all queries. The larger the MAP@H≤2, the better the
search quality for the data points within Hamming radius 2.

For shallow hashing methods, we use as image features
the 4096-dimensional DeCAF7 features [7]. For deep hash-
ing methods, we use raw images as the input. We adopt
the AlexNet architecture [15] for all deep hashing methods,
and implement DCH based on the TensorFlow framework.
We fine-tune convolutional layers conv1–conv5 and fully-
connected layers fc6–fc7 copied from the AlexNet model
pre-trained on ImageNet and train the last layer, all through
back-propagation. As the last layer is trained from scratch,
we set its learning rate to be 10 times that of the lower lay-
ers. We use mini-batch stochastic gradient descent (SGD)
with 0.9 momentum and cross-validate the learning rate
from 10−5 to 10−2 with a multiplicative step-size 10

1
2 . We

fix the mini-batch size of images as 256 and the weight de-
cay parameter as 0.0005. We select the model parameters
of DCH, λ and γ, by cross-validation. We also select the
parameters of each comparison method by cross-validation.

4.2. Results

The Mean Average Precision of Re-ranking within Ham-
ming Radius 2 (MAP@H≤2) results of all comparison
methods are listed in Table 1. Results show that DCH sub-
stantially outperforms all comparison methods, in that DCH
can perform high-quality pruning within Hamming radius 2
in the first step, enabling efficient re-ranking in the second
step. Specifically, compared to SDH, the best shallow hash-
ing method with deep features as input, DCH achieves ab-
solute increases of 14.4%, 13.3% and 21.9% in average

https://github.com/thuml
Flickr.com


Table 1. Mean Average Precision of Re-ranking within Hamming Radius 2 (MAP@H≤2) for Different Bits on Three Benchmark Datasets

Method NUS-WIDE MS-COCO CIFAR-10
16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

ITQ-CCA [12] 0.5706 0.4397 0.0825 0.0051 0.5949 0.5612 0.0585 0.0105 0.4258 0.4652 0.4774 0.4932
BRE [16] 0.5502 0.5422 0.4128 0.2202 0.5625 0.5498 0.4214 0.4014 0.4216 0.4519 0.4002 0.3438
KSH [22] 0.5185 0.5659 0.4102 0.0608 0.5797 0.5532 0.2338 0.0216 0.4368 0.4585 0.4012 0.3819
SDH [28] 0.6681 0.6824 0.5979 0.4679 0.6449 0.6766 0.5226 0.5108 0.5620 0.6428 0.6069 0.5012

CNNH [33] 0.5843 0.5989 0.5734 0.5729 0.5602 0.5685 0.5376 0.5058 0.5512 0.5468 0.5454 0.5364
DNNH [17] 0.6191 0.6216 0.5902 0.5626 0.5771 0.6023 0.5235 0.5013 0.5703 0.5985 0.6421 0.6118
DHN [36] 0.6901 0.7021 0.6685 0.5664 0.6749 0.6680 0.5151 0.4186 0.6929 0.6445 0.5835 0.5883

HashNet [4] 0.6944 0.7147 0.6736 0.6190 0.6851 0.6900 0.5589 0.5344 0.7476 0.7776 0.6399 0.6259
DCH 0.7401 0.7720 0.7685 0.7124 0.7010 0.7576 0.7251 0.7013 0.7901 0.7979 0.8071 0.7936
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Figure 3. The Precision curves within Hamming Radius 2 (P@H≤2) of DCH and comparison methods on the three benchmark datasets.
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Figure 4. The Recall curves within Hamming Radius 2 (R@H≤2) of DCH and comparison methods on the three benchmark datasets.

MAP@H≤2 with different code lengths on NUS-WIDE,
MS-COCO and CIFAR-10, respectively. DCH outperforms
HashNet, the state-of-the-art deep hashing method, by large
margins of 7.3%, 10.4% and 9.9% in average MAP@H≤2
with different code lengths on three benchmark datasets.

The MAP@H≤2 results reveal some interesting insights.
(1) Shallow hashing methods cannot learn discriminative
deep features and compact hash codes through end-to-end
framework, which explains the fact that they are surpassed
by deep hashing methods. (2) Deep hashing methods DHN
and HashNet learn less lossy hash codes by preserving
the similarity information and controlling the quantization
error, which also significantly outperform deep methods
CNNH and DNNH without reducing the quantization error.

The proposed DCH model improves substantially from
the state-of-the-art HashNet by two important perspectives:

(1) DCH preserves similarity relationships based on Cauchy
distribution, which can achieve better pruning performance
within Hamming radius 2; (2) DCH learns the novel Cauchy
cross-entropy loss and Cauchy quantization loss based on
normalized distance, which can better approximate the
Hamming distance to learn nearly lossless hash codes.

The performance of Precision within Hamming Radius
2 (P@H≤2) is very important for Hamming space retrieval,
since it only requires O(1) time for each query and enables
really efficient pruning. As shown in Figure 3, DCH of-
ten achieves the highest P@H≤2 results on all three bench-
mark datasets with regard to different code lengths. This
validates that DCH can learn compacter hash codes than all
comparison methods and can enable more efficient and ac-
curate Hamming space retrieval. With longer hash codes,
the Hamming space will become more sparse and fewer



Table 2. Mean Average Precision of Re-ranking within Hamming Radius 2 (MAP@H≤2) of DCH and Its Variants on Three Datasets

Method NUS-WIDE MS-COCO CIFAR-10
16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

DCH 0.7401 0.7720 0.7685 0.7124 0.7010 0.7576 0.7251 0.7013 0.7901 0.7979 0.8071 0.7936
DCH-Q 0.7086 0.7458 0.7432 0.7028 0.6785 0.7238 0.6982 0.6913 0.7645 0.7789 0.7858 0.7832
DCH-C 0.6997 0.7205 0.6874 0.6328 0.6767 0.6972 0.5801 0.5536 0.7513 0.7628 0.6819 0.6627
DCH-E 0.7178 0.7511 0.7302 0.6982 0.6826 0.7128 0.6803 0.6735 0.7598 0.7739 0.7495 0.7287

data points will fall in the Hamming ball within radius 2.
This is why most previous hashing methods achieve worse
retrieval performance with longer code lengths. It is worth
noting that DCH achieves a relatively mild decrease or even
an increase in accuracy by longer code lengths, validating
that DCH can effectively concentrate hash codes of simi-
lar data points together to be within the Hamming radius 2,
which significantly benefit Hamming space retrieval.

The performance of Recall within Hamming Radius 2
(R@H≤2) is crucial for Hamming space retrieval, since it
is likely that all data points will be pruned out due to the
highly sparse Hamming space. As shown in Figure 4, DCH
achieves the highest R@H≤2 results on all three datasets
w.r.t different code lengths, which is very encouraging. This
validates that DCH can concentrate more relevant points to
be within the Hamming ball of radius 2 than all the com-
parison methods. As the Hamming space will become more
sparse when using longer hash codes, most hashing base-
lines incur serious performance drop on R@H≤2. Since the
relationships between data pairs on multi-label datasets are
more complex than that on single-label datasets, the perfor-
mance drop becomes more serious on multi-label datasets
such as NUS-WIDE and MS-COCO. By introducing the
novel Cauchy cross-entropy loss and Cauchy quantization
loss, even on multi-label datasets, the proposed DCH incurs
very small performance drop on R@H≤2 as the hash codes
become longer, showing that DCH can concentrate more
relevant points to be within Hamming radius 2 even using
longer code lengths. The ability to use longer codes gives a
flexible to tradeoff between accuracy and efficiency, a flexi-
bility that is often impossible for previous hashing methods.

4.3. Discussion

4.3.1 Ablation Study

We investigate three DCH variants: (1) DCH-Q is a DCH
variant without using the new Cauchy quantization loss (9),
in other words λ=0; (2) DCH-C is a DCH variant replac-
ing the Cauchy cross-entropy loss with the popular sigmoid
cross-entropy loss [36, 4]; (3) DCH-E is a DCH variant
replacing the normalized Euclidean distance (6) with the
Euclidean distance as d (hi,hj) = 1

4 ‖hi − hj‖22. The
MAP@H≤2 results w.r.t. different code lengths on all three
benchmark datasets are reported in Table 2.

Cauchy Cross-Entropy Loss. DCH outperforms DCH-
C by very large margins of 6.3%, 9.4% and 8.3% in average

MAP@H≤2 with different code lengths on NUS-WIDE,
MS-COCO and CIFAR-10, respectively. The Cauchy cross-
entropy loss (8) is based on the Cauchy distribution, which
can keep more relevant points to be within small Hamming
radius to enable effective Hamming space retrieval, whereas
the sigmoid cross-entropy loss cannot achieve this desired
property. Also, DCH outperforms DCH-E by large margins
of 2.4%, 3.4% and 4.4% in average MAP@H≤2 with dif-
ferent code lengths on three datasets. In real search engines,
normalized distance is widely used to mitigate the diversity
of vector lengths and improve the retrieval quality, which
has not been integrated with the cross-entropy loss [31].

Cauchy Quantization Loss. DCH outperforms DCH-
Q by 2.3%, 2.3%, and 1.9% in average MAP@H≤2 with
different code lengths on three benchmarks, respectively.
These results validate that the novel Cauchy quantization
loss (9) can enhance the pruning efficiency and improve the
pruning and re-ranking results within Hamming radius 2.

4.3.2 Sensitivity Study

In Hamming space retrieval, a key aspect is to control the
tradeoff between precision and recall as well as efficiency
w.r.t. different Hamming radiuses. As aforementioned, the
time cost for Hamming pruning through hash table lookups
is N (K, r) =

∑r
k=0

(
K
k

)
, where r is the Hamming radius.

Hence N(K, r) ∝ Kr, and we can only tolerate smaller
Hamming radius, typically r ≤ 10. In other words, we
cannot use large Hamming radius for higher recall. In this
paper, we introduce the Cauchy distribution parameter γ to
fully tradeoff precision and recall, with sensitivity study of
γ in terms of precision and recall shown in Figure 5.

Figure 5(a) shows the precision curves w.r.t. different
values of γ for practical Hamming radiuses r = [0, . . . , 4].
Figure 5(b) shows the precision curves w.r.t. different Ham-
ming radiuses for typical values of γ = [2, . . . , 500], which
is an alternative view of Figure 5(a). As can be seen, larger
(smaller) Hamming radius requires larger (smaller) value
of γ to guarantee the highest precision, which is consistent
with the theoretical analysis. Although larger Hamming ra-
dius leads to higher precision when larger γ is used, the
pruning cost will be exponentially enlarged as O(Kr).

Figure 5(c) shows the recall curves w.r.t. different Ham-
ming radiuses for typical values of γ = [2, . . . , 500]. As can
be seen, larger (smaller) Hamming radius leads to higher
(lower) recall, which is consistent with the theoretical anal-
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Figure 5. Sensitivity study for DCH using 64-bit hash codes on NUS-WIDE dataset: (a) Precision curves w.r.t. γ for different Hamming
radiuses, (b) Precision curves w.r.t. Hamming radiuses for different γ, and (c) Recall curves w.r.t. Hamming radiuses for different γ.
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Figure 6. The t-SNE visualization of hash codes on CIFAR-10.

ysis. A very interesting observation is that, smaller (larger)
γ leads to larger (smaller) recall. As analyzed before, γ con-
trols the power of concentrating relevant data points within
smaller Hamming balls, and smaller γ leads to larger con-
centration power. Again, although larger Hamming radius
leads to higher recall when smaller γ is used, the pruning
cost will be exponentially enlarged as O(Kr).

Therefore, DCH provides with the powerful flexibility to
tradeoff precision and recall as well the pruning efficiency.
In practice, we usually decide the Hamming radius first
based on the efficiency requirement, and typically r = 2.
Then we tradeoff the precision and recall solely based on γ.
As seen from Figure 5, γ = 5 is the best choice for Ham-
ming radius r = 2. Besides the optimal value, we can vary
γ ∈ [2, 50] to achieve both satisfactory precision and recall.

4.3.3 Visualization Study

Visualization of Hash Codes by t-SNE. Figure 6 shows
the t-SNE visualization [29] of the hash codes learned by
DCH and the best deep hashing baseline HashNet [4] on
CIFAR-10 dataset. We can observe that the hash codes gen-
erated by DCH show clear discriminative structures where
the hash codes in different categories are well separated,
while the hash codes generated by HashNet do not show
such clear structures. This verifies that by introducing the
Cauchy distribution for hashing, the hash codes generated
through DCH are more discriminative than that generated
by HashNet, enabling more effective image retrieval.
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Figure 7. The top 10 images returned by DCH and HashNet.

Top 10 Results. In Figure 7, we visualize the top 10
returned images of DCH and the best deep hashing baseline
HashNet [4] for three query images on NUS-WIDE, MS-
COCO and CIFAR-10, respectively. It shows that DCH can
yield much more relevant and user-desired retrieval results.

5. Conclusion
This paper establishes efficient and effective Hamming

space retrieval with constant-time search complexity. The
proposed Deep Cauchy Hashing (DCH) approach generates
compact and concentrated hash codes by jointly optimiz-
ing a novel Cauchy cross-entropy loss and a Cauchy quan-
tization loss in a single Bayesian learning framework. The
overall model can be trained end-to-end with well-specified
loss functions. Extensive experiments show that DCH can
yield state-of-the-art Hamming space retrieval performance
on three datasets, NUS-WIDE, CIFAR-10, and MS-COCO.
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