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ABSTRACT
Efficient similarity retrieval from large-scale multimodal database
is pervasive in modern search engines and social networks. To sup-
port queries across content modalities, the system should enable
cross-modal correlation and computation-efficient indexing. While
hashing methods have shown great potential in achieving this goal,
current attempts generally fail to learn isomorphic hash codes in a
seamless scheme, that is, they embed multiple modalities in a con-
tinuous isomorphic space and separately threshold embeddings into
binary codes, which incurs substantial loss of retrieval accuracy. In
this paper, we approach seamless multimodal hashing by proposing
a novel Composite Correlation Quantization (CCQ) model. Specif-
ically, CCQ jointly finds correlation-maximal mappings that trans-
form different modalities into isomorphic latent space, and learns
composite quantizers that convert the isomorphic latent features
into compact binary codes. An optimization framework is devised
to preserve both intra-modal similarity and inter-modal correlation
through minimizing both reconstruction and quantization errors,
which can be trained from both paired and partially paired data in
linear time. A comprehensive set of experiments clearly show the
superior effectiveness and efficiency of CCQ against the state of the
art hashing methods for both unimodal and cross-modal retrieval.
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1. INTRODUCTION
While big data with large volume, high dimensions, and multiple

modalities are ubiquitous in search engines and social networks, it
has attracted increasing attention to distill the correlation structures
across heterogenous data modalities. For example, an uploaded im-
age on Flickr is usually annotated with some relevant descriptions
or tags, while a featured article on Wikipedia may consist of some
correlative images. As relevant data from different modalities may
endow semantic correlations, it is desirable to support multimodal
search, which retrieves semantically-relevant results of all modals
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in response to a unimodal query. Taking Flickr as an example, when
a query image is given, the system should return both relevant tags
and images. Due to large volume and semantic gap [18], effective
and efficient retrieval of multimodal data remains a challenge.

In the case that the reference database is large-scale or that the
distance calculation between query item and database item is costly,
an efficient solution to enabling similarity search is hashing based
methods [22], which perform approximate nearest neighbor (ANN)
search with both computation efficiency and acceptable accuracy.
The principle of hashing is to transform high-dimensional data into
compact binary codes and generate similar binary codes for similar
data items. The seminal work includes Locality Sensitive Hashing
(LSH) [1] and Spectral Hashing (SH) [25]. However, traditional
unimodal hashing methods cannot support multimodal search as
ANN cannot be directly computed across different modalities.

Recently, several useful attempts have been made to multimodal
hashing, which builds correlation structures across multiple modal-
ities in the process of hash function learning and index multimodal
data in a common Hamming space [5, 29, 13, 32, 33, 34, 20, 24, 27,
28, 8, 26, 16]. These methods generally work in two-step pipeline:
first, embed multiple data modalities into a continuous isomorphic
latent space by maximizing inter-modal correlations, and second,
quantize the isomorphic embeddings into binary hash codes by sign
thresholding. While showing promising performance, the two-step
pipeline may encounter two limitations: first, conversion from real-
valued features to discrete codes may incur substantial information
loss, making the continuous latent space suboptimal for binary cod-
ing and the binary codes suboptimal for retrieval [24, 10]; second,
directly binarizing latent features may lead to unbalanced encoding
schemes [32, 33]. Fundamentally, by continuous relaxation of the
binary constraints, most methods solve an optimization problem
which may deviate significantly from the hashing objective as the
quantization error is not accounted for in the optimization process.
This somewhat contradicts the motivation of multimodal hashing.
Hence, how to learn isomorphic hash codes for multimodal data in
a seamless optimization framework remains an open problem.

In this paper, we propose Composite Correlation Quantization
(CCQ), a novel model towards seamless multimodal hashing. Tech-
nically, CCQ jointly finds correlation-maximal mappings that trans-
form different modalities into an isomorphic latent space, and learns
composite quantizers that convert the isomorphic latent features
into compact binary codes. The flowcharts of CCQ and prior work
are shown in Figure 1. To create a seamless optimization frame-
work, we are inspired by Latent Semantic Analysis (LSA) [7] and
decompose each datum into three latent factors, namely, correlation-
maximal mapping, similarity-preserving codebook, and compact
binary code. The three latent factors are jointly learned through an
optimization problem, which preserves both intra-modal similarity
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Figure 1: Flowcharts of prior work (left) and CCQ (right). Prior work is a two-step pipeline: first map image-text pairs to isomorphic
latent space (denoted as polygon) and then binarize the continuous representation to hash codes (denoted as vertices of hypercube)
by sign thresholding. CCQ is a seamless optimization framework: jointly map both paired/unpaired images and texts to isomorphic
latent space (denoted as polygon) and learn hash codes by composite quantization. The quantization model learns isomorphic code-
book (denoted as Voronoi digram) and binary codes (denoted as histograms) by minimizing the quantization error, which suffices to
assign each latent representation to M -nearest codewords (denoted as Voronoi cells) and assignment indices are used as hash codes.

and inter-modal correlation while minimizing both reconstruction
and quantization errors. The CCQ model can construct extremely
compressed and balanced binary codes to enable efficient multi-
modal search, can readily handle a ubiquitous semi-paired scenario
where only a fraction of input data are multimodal, and can scale
linearly to large sample size. Comprehensive empirical evidence on
large-scale datasets confirms that the CCQ model exhibits superior
performance in both effectiveness and efficiency on both unimodal
and cross-modal search against state of the art hashing methods.

The subsequent paper is organized as follows. We review related
works in Section 2. We formally present our model in Section 3
and algorithm with analysis in Section 4. Empirical evaluations are
reported in Section 5, while conclusions are enclosed in Section 6.

2. RELATED WORK
Recently, hashing-based multimodal search is a prevalent research

focus in machine learning and information retrieval communities
[5, 13, 34, 20, 27, 8, 10, 28, 26, 23, 31], which enables approximate
similarity search on multimedia database with significant speedup
and acceptable accuracy. Refer to [22] for a comprehensive survey.

Existing multimodal hashing methods can be organized into two
categories: supervised methods and unsupervised methods. CMSSH
[5], SCM [28], QCH [26], and SePH [14] are supervised hashing
methods that require labeled pairs to indicate if the objects from dif-
ferent modalities are similar (positive) or dissimilar (negative). As
supervised information is usually unavailable in many applications,
the deployment of these methods may be severely restricted. CVH
[13], IMH [20], MSAE [24] and CorrAE [8] are unsupervised hash-
ing methods applicable to the most general multimodal retrieval
case given that paired data are available, while our proposed CCQ
model falls into this category. IMH [20] is an extension of spectral
hashing [25] to multimodal data, which is restricted by the train-
ing burden since constructing and eigendecomposing the similarity
matrices require O(N2). While CVH [13] tackles the scalability
issue, it does not jointly maximize cross-modality correlation and
preserve intra-modality similarity. MSAE [24] and CorrAE [8] can
capture both intra-modal similarity and inter-modal correlation by
deep autoencoders, but they require spectral hashing or sign thresh-
olding for obtaining binary codes from the continuous embeddings,
which will give rise to uncontrollable quantization errors [9, 12].

A crucial problem with existing methods is that they essentially
work in a separated two-step pipeline: first embed multimodal data
into a common continuous latent space and then threshold the con-
tinuous embeddings into binary codes of the Hamming space. Such
conversion from real-valued features to discrete codes may result
in substantial information loss, making the continuous latent space
suboptimal for the binary codes and the binary codes suboptimal
for retrieval [30]. Furthermore, directly binarizing latent represen-
tation may lead to unbalanced encoding schemes, as shown in [32,

33]. Although IMVH [10] learns multimodal hash functions using
a graph-cut quantizer instead of the sign thresholding, the quantizer
solves a fast approximation of energy function with orthogonal con-
straints and recurs large quantization error and unbalanced codes.
CCQ approaches this problem by learning the modality-consistent
latent space and balanced binary codes in a principled framework.

3. COMPOSITE CORRELATION QUANTI-
ZATION

3.1 Problem Statements
In the multimodal search system, the database and query consist

of objects from different modalities. We only use image and text as
two modalities to explain our approach, but the approach is formu-
lated to support any number V of modalities. Let X1 ∈ RP1×N1 be
an image set ofN0 images with tags and the rest N̄1 images without
tags, where N1 = N0 + N̄1 and each image is represented by P1-
dimensional feature vector. Let X2 ∈ RP2×N2 be a text set of N0

documents of the image tags and additional N̄2 documents, where
N2 = N0 + N̄2 and each text is represented by P2-dimensional
feature vector. Note that the proposed approach can handle semi-
paired data where only a fraction N0/(N1 + N2) of objects are
multimodal, and is more realistic than typical multimodal methods.

An efficient approach to calculating the distance between image
and text is to map images and texts to modality-isomorphic binary
codes in which different modalities of the objects are comparable.
In this paper, we will approach this problem by a joint optimization
framework, dubbed Composite Correlation Quantization (CCQ).

DEFINITION 1 (CCQ). Given an image x1
n ∈ RP1 and a text

x2
n ∈ RP2 , learn two correlation-maximal mappings f1 : RP1 7→

RD and f2 : RP2 7→ RD that transform images and texts into a
D-dimensional isomorphic latent space, and jointly learn two com-
posite quantizers q1 : RD 7→ {0, 1}H and q2 : RD 7→ {0, 1}H
that quantize latent embeddings into compact H-bits binary codes.

In the commonH-bits binary space, image and text can be easily
comparable such that both intra-modal and cross-modal search can
be readily supported. After mappings f1, f2 and quantizers q1, q2

have been learned, the multimodal search problem can be converted
into classical approximate nearest neighbor (ANN) search problem.

3.2 Composite Correlation Quantization
The main idea of CCQ is to jointly learn a correlation-maximal

latent space and a similarity-preserving composite quantization in
a unified optimization framework. To achieve this mission, we are
inspired by Latent Semantic Analysis (LSA) [7] and decompose
each input datum (image or text) xv

n into three latent factors Rv ,
Cv , bv

n, that is, xv
n ≈ RvCvbv

n. While sharing similar formation



as LSA, our formulation endows these latent factors with different
semantics and thus constrains them with different conditions. More
specifically, Rv is correlation-maximal mapping, Cv is similarity-
preserving codebook, and bv

n is the compact binary code of xv
n. We

present how to formulate the CCQ approach under these semantics.

3.2.1 Intra-Modality Similarity Quantization
To represent inputs with compact binary codes, two mainstream

paradigms are sign thresholding in Hamming embedding methods
[25], and vector quantization in codebook-based encoding methods
[12]. As sign thresholding cannot guarantee minimal quantization
error, we therefore adopt the vector quantization paradigm. CCQ is
based on a set of M codebooks Cv = [Cv

1 , . . . ,C
v
M ], where each

codebook Cv
m contains K codewords Cv

m = [Cv
m1, . . . ,C

v
mK ],

and each codeword Cv
mk is a D-dimensional vector like the cluster

centroid in kmeans clustering. Corresponding to theM codebooks,
we partition the binary codewords assignment vector bv

n into M 1-
of-K indicator vectors bv

n = [bv
1n; . . . ;bv

mn], and each indicator
vector bv

mn indicates which one (and only one) of theK codewords
in the mth codebook is selected to approximate the nth data point.
The CCQ model encodes each xv

n as the sum ofM codewords, one
codeword per codebook, each indicated by the binary assignment
vector bv

n. This yields a novel and more accurate composite ap-
proximation scheme xv

n ≈ Rv∑M
m=1 C

v
mbv

mn. Consistent with
LSA and kmeans, the sum of squared loss between all xv

n’s and the
sum of selected codewords after transformed by Rv , is minimized,

min
Rv,Cv,Bv

Nv∑
n=1

∥∥∥∥∥xv
n −Rv

M∑
m=1

Cv
mbv

mn

∥∥∥∥∥
2

2

s.t. ‖bmn‖0 = 1,bmn ∈ {0, 1}K

m = 1 . . .M, n = 1 . . . Nv,

(1)

where ‖·‖0 denotes the `0-norm that simply counts the number of
the vector’s nonzero elements. The constraint guarantees that only
one codeword in each codebook can be activated to approximate
the input data, hence it can lead to compact binary codes. As the
binary constraints are directly imposed to the learning objective and
are valid throughout the optimization procedure, the derived binary
codes are much more accurate than sign thresholding binary codes.
The rationale of using M codebooks instead of single codebook to
approximate each input datum is to further minimize quantization
error, as the latter is shown to yield significantly lossy compression
and incur evident performance drop [30, 3]. Quantization based on
multiple codebooks yields balanced composite binary codes which
are more effective than Hamming embedding binary codes [12, 17].

3.2.2 Inter-Modality Correlation Maximization
The most desirable value of multimodal retrieval is to enable

transfer of knowledge across different modalities so that cross-modal
retrieval performance can be improved. A fundamental assumption
for multimodal retrieval is that by mapping objects in a modality-
consistent latent space, the latent space representations of semanti-
cally relevant inter-modal pairs should be consistent. More specif-
ically, for each input object with both image modality x1

n and text
modality x2

n, after being transformed by R1 and R2 in Equation (1),
the latent space representations for image modality C1b1

n and text
modality C2b2

n should be similar. To our knowledge, most prior
work adopts the coupling strategy to minimize

∥∥C1b1
n −C2b2

n

∥∥2

2
.

In this paper, we propose to maximize cross-modal correlation by
sharing codebooks {Cm}Mm=1 for different modalities and sharing
binary codes {bn}N0

n=1 for semantically relevant inter-modal pairs.
While for the data points with only one modality, the multimodal

sharing strategy does not apply. Hence, the proposed condition that
the modality-consistent latent space should satisfy is formulated as

Cv
m = Cm and δ (bv

mn) =

{
bmn, n = 1 . . . N0

bv
mn, otherwise,

(2)

where δ(·) distinguishes multimodal objects from unimodal ones.
Different from most prior methods [20, 8], our modality-consistent
condition requires identical code b1

n = b2
n, instead of minimized

distance
∥∥b1

n − b2
n

∥∥, for the semantically relevant inter-modal pairs.
There are two advantages of our approach. First, since our learning
objective keeps the binary constraint valid throughout optimization
procedure, it is very difficult to require minimized distance between
two binary codes as their nonzero elements may differ significantly.
Note that prior methods simply drop the binary condition and solve
a continuous problem, which leads to uncontrollable quantization
error with the post-step sign thresholding. Second, integrating the
minimized distance condition in the learning objective as existing
methods may introduce a trade-off term, or parameter, that is hard
to tune since its magnitude is very different from learning loss (1).

3.2.3 Joint Optimization Framework
To approach CCQ, which jointly learns a similarity-preserving

composite quantization and a correlation-maximal latent space in a
unified optimization framework, we jointly require the codebooks
{Cm}Mm=1 subject to minimizing the quantization error of all modal-
ities as Equation (1), and the mappings Rv subject to maximizing
the correlations between semantically relevant inter-modal pairs as
Equation (2) while jointly minimizing the reconstruction error of
input data as LSA. This leads to a joint optimization framework as

min
Rv,C,Bv

V∑
v=1

Nv∑
n=1

λv

∥∥∥∥∥xv
n −Rv

M∑
m=1

Cmδ (bv
mn)

∥∥∥∥∥
2

2

s.t. RvTRv = ID×D,R
v ∈ RPv×D

‖δ (bv
mn)‖0 = 1, δ (bv

mn) ∈ {0, 1}K

δ (bv
mn) =

{
bmn, n = 1 . . . N0

bv
mn, otherwise

v = 1 . . . V,m = 1 . . .M, n = 1 . . . Nv,

(3)

where λv is the weight parameter for each modality, and in bimodal
problems with V = 2, we can simplify the notations by denoting
λ1 = 1 and λ2 = λ, while such notations are used throughout
this paper. Rv is the transformation matrix that maps the inputs of
each modality to aD-dimensional modality-consistent latent space.
The orthogonal constraints are motivated by LSA, which can turn
latent factors Rv into transformation matrices for efficient out-of-
sample quantization. The binary codes bv

n areM×K-dimensional,
fortunately however, each bv

mn is 1-of-K encoding with only one
nonzero element and can be represented using log2K bits, hence
the final hash codes bv

n can be compacted intoH = M log2K bits,
which is independent on the dimensions of input or latent spaces.
To fit each bv

mn into one byte, K = 256 is a good choice [12, 30].
We simply set D = min({Pv}Vv=1, H), in the sense that an H-bit
binary code can reconstruct a D-dimensional vector accurately.

Formally, we derive correlation-maximal mappings fv (xv
n) =

RvTxv
n and similarity-preserving quantizers qv (fv (xv

n)) = bv
n.

There are several advantages of the CCQ approach. First, CCQ
jointly learns a correlation-maximal latent space and a similarity-
preserving composite encoding, which can minimize the quantiza-
tion loss and guarantee search quality. Second, CCQ explores both
paired and unpaired data in a semi-paired quantization paradigm,



which can benefit from semi-supervised learning in that paired data
consolidate inter-modality correlation and unpaired data enhance
intra-modality quantization. Third, CCQ is formulated with only
two easy-tuning model parameters D and λ, where D can be set as
simply as LSA to retain most covariance information, and λ can be
selected by trading off different modalities using prior information.
In particular, the proposed sharing of codebooks and binary codes
across modalities (2) enables joint learning of latent semantics that
are maximally correlated in the isomorphic feature space, which
contributes most significantly to the efficacy of the CCQ approach.

3.3 Approximate Nearest Neighbor Search
Approximate nearest neighbor (ANN) search based on Euclidean

distance is a powerful task for quantization techniques [12]. Given
a database of CCQ hash codes {bv

n}Nv
n=1, we follow [12, 17] and

use Asymmetric Quantizer Distance (AQD) as similarity metric that
computes the distance between query qv̄ and database point xv

n as

AQD
(
qv̄,xv

n

)
=
∥∥∥qv̄ −Rv̄

∑M

m=1
Cmbv

mn

∥∥∥2

2

= −2
∑M

m=1

〈
q̃v̄,Cmbv

mn

〉
+
∥∥∥∑M

m=1 Cmbv
mn

∥∥∥2

2

+
∥∥q̃v̄

∥∥2

2
+
∥∥∥Rv̄T
⊥ qv̄

∥∥∥2

2
,

(4)

where q̃v̄ = Rv̄Tqv̄ is the transformed query. In the second row,
the first term computes the inner products between q̃v̄ andM code-
words selected by bv

n. Given a query, these inner products for all
M codebooks {Cm}Mm=1 and allK possible values of bv

mn can be
pre-computed and stored in a query-specific M ×K lookup table,
which is used to compute AQD between the query and all database
points, each entails M table lookups and additions and is slightly
more costly than Hamming distance. The second term computes
the squared norm of decoded database point, which is independent
on the query and can be encoded using one byte by quantizing these
scale values on held-out dataset [3]. At quantization, we augment
CCQ code with the norm byte, which costs one more lookup and
one more byte per database point. We can eliminate this norm byte
by composite quantization [30], but will leave it to our future work.

4. ALGORITHM AND ANALYSIS

4.1 Learning Algorithm
The CCQ optimization problem (3) consists of three variables,

Rv , C, and Bv . We adopt alternating optimization [12, 17, 3, 30]
which iteratively updates one variable with the rest variables fixed.

4.1.1 Update Rv

We update Rv by fixing C and Bv as known variables, and write
Equation (3) with Rv as unknown variables in matrix formulation,

minRv ‖Xv −RvCδ (Bv)‖2F
s.t. RvTRv = ID×D.

(5)

This is equivalent to the Orthogonal Procrustes problem [19] and
can be solved exactly using SVD. More specifically, we perform
SVD as Xv[Cδ (Bv)]T = USVT, then we achieve Rv = UVT.

4.1.2 Update C

We update C by fixing Rv and Bv as known variables, and write
Equation (3) with C as unknown variables in matrix formulation,

min
C

∑V

v=1

∥∥∥RvTXv −Cδ (Bv)
∥∥∥2

F
. (6)

Algorithm 1: CCQ: Composite Correlation Quantization

Input: Data {Xv}Vv=1; latent dimension D, modal weight λ.
Output: Mappings {Rv}, codebook C, binary codes {Bv}.

1 Initialize {Rv} by identity, C randomly, {Bv} by NN search.
2 repeat
3 Update {Rv} by Orthogonal Procrustes as Eqn. (5).
4 Update C by Quadratic Optimization as Eqn. (6).
5 for n← 1 to Nv do
6 Update {bv

n} by ICM or greedy algorithm as Eqn. (7).
7 end
8 until Convergence

This is an unconstrained quadratic problem with analytic solution

C =
[∑V

v=1 λvR
vTXvδ (Bv)T

] [∑V
v=1 λvδ (Bv) δ(Bv)T

]−1

.
Algorithms such as L-BFGS can be used to speed up computation.

4.1.3 Update Bv

It is obvious that each bv
n is independent on {bv

n′}n′ 6=n, then the
optimization problem for Bv is decomposed to Nv subproblems,

min
bv
n

∑V

v=1
λv

∥∥∥RvTxv
n −

∑M

m=1
Cmδ (bv

mn)
∥∥∥2

2

s.t. ‖δ (bv
mn)‖0 = 1, δ (bv

mn) ∈ {0, 1}K .
(7)

This optimization problem is generally NP-hard. As shown in [30],
this problem is essentially high-order Markov Random Field (MRF)
problem and can be solved by the Iterated Conditional Modes (ICM)
algorithm [4] which solves M indicators {bv

mn}Mm=1 alternatively.
Given {bv

m′n}m′ 6=m fixed, we update bv
mn by exhaustively check-

ing all the codeword in codebook Cm, finding the codeword such
that the objective in (7) is minimized, and setting the corresponding
entry of bv

mn as 1 and the rest as 0. The algorithm is guaranteed to
converge, and can be terminated if maximum iterations are reached.
To accelerate quantization, we can explore hierarchical structure of
codebooks {Cm} and update {bv

mn} by a new greedy algorithm.
Specifically, after updating {bv

m′n}m′<m, we can update bv
mn by

encoding residual RvTxv
n−

∑m−1
m′=1 Cm′δ (bv

m′n) with codebook
Cm. The overall learning procedure is summarized in Algorithm 1.

4.2 Large-Scale Implementation
Batch algorithms are memory-inefficient for large-scale datasets,

hence we formulate CCQ optimization into mini-batch algorithms
for large-scale problems [24]. The main idea is to split the training
set into mini-batches and load a fraction of data points into memory
each time. Hence, the memory usage stays constant when the size
of the training set increases. The update of Bv in Equation (7) is
already mini-batch in that update of each data point is independent
on the other data points. To update Rv in mini-batch, we notice that
the matrix for SVD is Xv[Cδ (Bv)]T ∈ RPv×D , which if given,
the SVD can be solved in O(P 2

vD), independent on the number of
data points. We thus formulate the matrix for SVD in a point-wise
summation form as

∑Nv
n=1 x

v
n[Cδ (bn)]T, then it can be computed

by traversing all data points in a mini-batch paradigm. Similarly,
the update of C can also be formulated in a summation form for
mini-batch implementation. Note that we can allocate all available
memory to mini-batch and trade off memory and disk reading costs.

4.3 Computational Complexity
We analyze the cost of each iteration to show CCQ scales linearly

to sample size Nv . To update Rv , it takes O (NvPvD +NvDM)
to prepare the problem and O

(
P 2
vD +D3

)
to compute the SVD.



To update C, it takesO
(
NvPvD +NvDM +NvM

2
)

to prepare
the problem andO

(
DM2K2 +M3K3

)
to compute the quadratic

optimization. To update Bv , it takes O (NvPvD +NvDMKTi),
where Ti is the number of iterations and Ti = 3 in ICM algorithm
or Ti = 1 in greedy algorithm can obtain satisfactory performance.
As a rule of thumb, D = H and K = 256 are good choices for
most applications. For longer codes, update of C is inefficient, in
which case we can adopt the online L-BFGS algorithm for speedup.

4.4 Approximation Error Analysis
Given a query qv̄ and a database point xv

n, after transformed by
correlation-maximal mappings q̃v̄ = Rv̄Tqv̄ and x̃v

n = RvTxv
n,

they can be comparable in the modality-consistent latent space, and
their Euclidean distance is computed as d

(
q̃v̄, x̃v

n

)
=
∥∥q̃v̄ − x̃v

n

∥∥
2
.

As computing Euclidean distance on real-valued vectors is too costly
for large-scale search, we compute AQD (4) on binary codes. Hence,
we need to analyze the error bound of using AQD to approximate
real-valued distance. Denote x̂v

n =
∑M

m=1 Cmbv
mn the decoded

vector of xv
n, then AQD

(
qv̄,xv

n

)
= d

(
q̃v̄, x̂v

n

)
+ε, ε is a constant.

THEOREM 1 (BOUND). The error is bounded by learning loss∣∣d (q̃v̄, x̃v
n

)
− d

(
q̃v̄, x̂v

n

)∣∣ 6 ∥∥∥xv
n −Rv∑M

m=1 Cmbv
mn

∥∥∥
2
.

(8)

PROOF. From the triangle inequality,
∣∣d (q̃v̄, x̃v

n

)
− d

(
q̃v̄, x̂v

n

)∣∣ 6
d (x̃v

n, x̂
v
n). Then

d2 (x̃v
n, x̂

v
n) =

∥∥∥RvTxv
n −

∑M
m=1 Cmbv
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(9)
where Rv

⊥ is an orthogonal complement of Rv , RvTRv
⊥ = 0.

The theorem confirms that the error of using AQD to approximate
real-valued distance is statistically bounded by CCQ learning loss.
Hence, CCQ is more accurate than sign thresholding methods [25].
An important advantage of CCQ in Equation (9) is that mapping
Rv is learned by a joint optimization of canonical correlation anal-
ysis (CCA) and principal component analysis (PCA) corresponding
to the first and second terms of Line 2 in Equation (9). This can be
much more effective than most CCA-based methods [13, 28, 26].

5. EXPERIMENTS
We conduct extensive evaluation of CCQ against state of the art

methods on three public multimodal datasets. We investigate both
effectiveness and efficiency in terms of search precision, recall, and
time. The codes, data, and configurations will be available online.

5.1 Datasets
The evaluation is conducted on three datasets: NUS-WIDE [6],

Wiki [18], and Flickr1M [11], with statistics depicted in Table 1.
We preprocess all datasets by applying ZCA [24] to normalize each
dimension of image/text features to be zero mean and unit variance.

NUS-WIDE1 is a Web image dataset containing 269, 648 images
downloaded from Flickr, each associated with 6 tags on average.
There are 81 ground truth concepts manually annotated for search
evaluation. Following prior works [34, 24], we prune the original
NUS-WIDE to form a new dataset consisting of 195,834 image-text

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

Table 1: The Statistics of Three Datasets
Dataset NUS-WIDE Wiki Flickr1M

Complete Set 195,834 2,866 1,000,000
Labeled Set 195,834 2,866 25,000
Query Set 2,000 693 1,000
Database 193,834 2,173 24,000

Training Set 10,000 2,173 975,000

pairs by keeping the pairs that belong to one of the 21 most frequent
concepts. The images are represented by 500-dimensional bag-of-
words vectors extracted from the SIFT features using k-means, and
the texts are represented by 1,000-dimensional vectors extracted
from the tag occurrence features using PCA. A query set of 2,000
image-text pairs are randomly sampled from the dataset, while the
remaining 193,834 image-text pairs are serving as the database.
The hash models are learned on the training set containing 10,000
image-text pairs randomly sampled from the database [34, 20].

Wiki2 contains 2,866 image-text pairs selected from Wikipedia’s
featured articles comprised of multiple sections of images and texts.
Every image-text pair is labeled by one of the 10 concepts in the
article categories. Each image is represented by a 128-dimensional
bag-of-words vector extracted from SIFT features, and each text is
represented by the probability distribution over 10 topics learned by
a latent Dirichlet allocation (LDA) model. The dataset is released
with a query set of 693 pairs and a database of 2,173 pairs, and the
whole database is used as the training set for hash coding [18, 34].

Flickr1M comprises 1,000,000 images associated with tags from
Flickr, in which 25,000 are labeled with 38 concepts while the re-
maining 975,000 are unlabeled. The public available preprocessed
dataset3 is employed for evaluation, in which each image is repre-
sented by a 3,857-dimensional vector concatenated by local SIFT
feature, global GIST feature, etc [21]. Each text is represented by
a 2,000-dimensional vector extracted from tag occurrences. The
query set contains 1,000 image-text pairs randomly sampled from
the 25,000 labeled pairs, and the rest 24,000 labeled pairs are used
as the database. In scalability test of CCQ (Section 5.7), all 975,000
unlabeled pairs are used as the training set for learning hash codes.

5.2 Comparison Methods
We compare CCQ against many state of the art hashing methods.

• Unsupervised hashing: Cross-View Hashing (CVH)6 [13]
and Inter-Media Hashing (IMH)4 [20] are unsupervised hash-
ing methods that extend spectral hashing to exploit the local
structure of multimodal data for learning binary codes.

• Deep hashing: Correspondence Auto-Encoders (CorrAE)5

[8] learns latent features via unsupervised deep auto-encoders,
which captures both intra-modal and inter-modal correspon-
dences, and binarizes latent features via sign thresholding.

• Supervised hashing: Cross-Modal Similarity-Sensitive Hash-
ing (CMSSH)6 [5], Semantic Correlation Maximization (SCM)
[28], and Quantized Correlation Hashing (QCH) are super-
vised hashing methods which embed multimodal data into a
common Hamming space using supervised metric learning.

2http://www.svcl.ucsd.edu/projects/crossmodal
3http://www.cs.toronto.edu/~nitish/multimodal
4http://staff.itee.uq.edu.au/shenht/UQ_IMH
5https://github.com/fangxiangfeng/deepnet
6http://www.cse.ust.hk/~dyyeung/code/mlbe.zip



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.35

0.4

0.45

0.5

Recall

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(a) I → T @ 16 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.35

0.4

0.45

0.5

Recall

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(b) I → T @ 32 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.35

0.4

0.45

0.5

0.55

Recall

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(c) T → I @ 16 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.35

0.4

0.45

0.5

0.55

Recall

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(d) T → I @ 32 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.35

0.4

0.45

0.5

R (× 10
3
)

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(e) I → T @ 16 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.35

0.4

0.45

0.5

R (× 10
3
)

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(f) I → T @ 32 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.35

0.4

0.45

0.5

0.55

R (× 10
3
)

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(g) T → I @ 16 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.35

0.4

0.45

0.5

0.55

R (× 10
3
)

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(h) T → I @ 32 bits

Figure 2: Precision-recall curves (top) and precision@R curves (bottom) on NUS-WIDE cross-modal search tasks @ 16 and 32 bits.

5.3 Evaluation Protocols
We perform four types of multimodal retrieval schemes: (1) I → I:

use image queries to retrieve relevant images; (2) T → T : use text
queries to retrieve relevant texts; (3) I → T : use image queries
to retrieve relevant texts; and (4) T → I: use text queries to re-
trieve relevant images. The first two tasks are intra-modal retrieval
and the last two tasks are cross-modal retrieval. As CCQ can also
handle multimodal search where both modalities are available for
the database, we show the results of multimodal retrieval schemes
where each image-text pair is quantized into a unified hash code by
fusing knowledge of different modalities: (5) I → IT : use image
queries to retrieve relevant image-text pairs; (6) T → IT : use text
queries to retrieve relevant image-text pairs. The baseline methods
do not support multimodal search because they do not use shared
coding for different modalities of the same object. Given a query,
the ground truth is defined as: if a result shares at least one common
concept with the query, it is relevant; otherwise it is irrelevant.

We adopt Mean Average Precision (MAP) to measure the effec-
tiveness of multimodal search [20, 34, 24, 27, 8]. Given a set of
queries, we first calculate Average Precision (AP) of each query as

AP@R =

∑R
r=1 P (r) δ (r)∑R

r′=1 δ (r′)
, (10)

where R is the number of retrieved documents, P (r) denotes the
precision of the top r retrieved results, and δ(r) = 1 if the r-th
retrieved result is a true neighbor of the query, otherwise δ(r) = 0.
Then MAP is computed as the mean of all the queries’ average pre-
cision, and the larger the MAP, the better the retrieval performance.
In the experiments, we follow [15, 27, 24] to report MAP@R =
50. We also report another two standard retrieval criteria, precision-
recall curves and precision@top-R curves of all retrieval tasks. In
addition to effectiveness, we report time and memory costs as the
efficiency measures for query processing and model training.

The CCQ approach involves two model parameters: dimension
of modality-consistent subspace D and modality trade-off weight
λ. In principle, CCQ is almost immune to different choices ofD, as
long as D is large enough to retain the majority amount of covari-
ance information as LSA. While no prior knowledge is available,
we can simply set equal weights λ = 1 for different modalities,
which can already achieve satisfactory performance. Nonetheless,

for image-text bimodal search, the text modality usually carry more
semantic information, hence we equip CCQ with the flexibility for
selecting the optimal λ to encode such important prior knowledge.
Given annotation ground truths as in the evaluation datasets, we can
automatically select D and λ using cross-validation. However, we
choose to blindly fix λ = 5 throughout the comparative study. This
is desirable as cross-validation may be impossible in the pervasive
unsupervised multimodal search. We will study parameter sensitiv-
ity in Section 5.8 to validate that CCQ can consistently outperform
the state of the arts with a wide range of parameter configurations.

For the comparison methods, we adopt cross-validation to select
their optimal parameters, respectively. As cross-validation requires
annotation ground truths, this further confirms CCQ’s superior pa-
rameter stability. Subject to computation burden, it is too costly to
train CMSSH and IMH on the complete Flickr1M dataset, hence
we randomly sample 10,000 image-text pairs to train these models.
Each experiment repeats ten runs and the average result is reported.

5.4 Experimental Results
We compare CCQ with state of the art methods in terms of MAP

and precision-recall on 4 multimodal retrieval tasks (I → I , T → T ,
I → T , T → I) of three datasets (NUS-WIDE, Wiki, and Flickr1M).

5.4.1 Results on NUS-WIDE
We evaluate CCQ against state of the arts with different lengths

of hash codes, i.e. 8, 16, 32, and 64 bits, and report the MAP results
in Table 2. For all multimodal retrieval tasks, CCQ achieves signif-
icantly better performance than all unsupervised hashing methods
CVH, IMH, and CorrAE, and generally outperforms the state of
the art supervised hashing methods CMSSH, SCM, QCH in most
cases. It is very worth noting that, CCQ is an unsupervised hashing
method that does not require labeled similarity information. Hence
CCQ is particularly beneficial when labeled information is unavail-
able, which is the most common scenario in big data era. A notable
limitation of orthogonal constrained methods CVH and IMH is
that longer codes do not necessarily improve performance in cross-
modal tasks I → T and T → I . The reason is that these methods
learn uncorrelated hash bits via eigenvalue decomposition on sim-
ilarity matrix, which leads to unbalanced hash codes with the first
k eigenvectors (hash bits) dominating the whole hash codes. CCQ



Table 2: Mean Average Precision (MAP) Comparison of Six Multimodal Retrieval Tasks on Three Standard Datasets
Task Method NUS-WIDE Wiki Flickr1M

8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

I → I

CVH [13] 0.3954 0.4542 0.4759 0.4780 0.1988 0.1969 0.2042 0.2058 0.6050 0.6328 0.6615 0.6712
IMH [20] 0.4313 0.4545 0.4155 0.4005 0.1910 0.1963 0.1937 0.1935 0.5239 0.5725 0.5736 0.5748

CorrAE [8] 0.4223 0.4478 0.4587 0.4796 0.2055 0.2086 0.2188 0.2194 0.6145 0.6397 0.6588 0.6654
CMSSH [5] 0.3776 0.4060 0.4356 0.4490 0.1987 0.1979 0.2007 0.2126 0.5738 0.6304 0.6587 0.6932
SCM [28] 0.4258 0.4578 0.4695 0.4831 0.2048 0.2103 0.2177 0.2212 0.5926 0.6257 0.6615 0.6801
QCH [26] 0.4289 0.4557 0.4786 0.4898 0.2087 0.2155 0.2198 0.2252 0.6165 0.6586 0.6787 0.6885

CCQ (ours) 0.4711 0.4859 0.4921 0.4932 0.2226 0.2265 0.2373 0.2386 0.6714 0.7092 0.7318 0.7451

T → T

CVH [13] 0.5825 0.6485 0.6837 0.7189 0.4049 0.5506 0.6075 0.6239 0.5812 0.6085 0.6242 0.6337
IMH [20] 0.4531 0.4740 0.5421 0.6202 0.3805 0.4623 0.5773 0.5989 0.5585 0.5973 0.6360 0.6436

CorrAE [8] 0.5501 0.5856 0.6344 0.6678 0.5765 0.5889 0.6045 0.6123 0.6060 0.6176 0.6389 0.6443
CMSSH [5] 0.5911 0.5968 0.6215 0.6613 0.5503 0.6065 0.6188 0.6232 0.5487 0.5573 0.5583 0.5614
SCM [28] 0.5524 0.6315 0.6606 0.6736 0.5814 0.6051 0.6189 0.6324 0.5924 0.6320 0.6410 0.6485
QCH [26] 0.5706 0.6586 0.6796 0.6855 0.6002 0.6128 0.6226 0.6355 0.6022 0.6427 0.6554 0.6686

CCQ (ours) 0.5913 0.6481 0.6917 0.7069 0.6017 0.6286 0.6366 0.6422 0.6090 0.6433 0.6541 0.6550

I → T

CVH [13] 0.4588 0.4713 0.4743 0.4740 0.1673 0.1877 0.1716 0.1696 0.6091 0.6225 0.6364 0.6199
IMH [20] 0.4345 0.4399 0.4203 0.4115 0.1734 0.1896 0.1714 0.1601 0.5449 0.5646 0.5936 0.5539

CorrAE [8] 0.4398 0.4522 0.4699 0.4964 0.1929 0.1982 0.2033 0.2155 0.6301 0.6329 0.6357 0.6401
CMSSH [5] 0.3950 0.4052 0.4076 0.3516 0.1672 0.1727 0.1750 0.1759 0.5076 0.5272 0.5357 0.5219
SCM [28] 0.4693 0.4648 0.4619 0.4851 0.2258 0.2372 0.2381 0.2378 0.6361 0.6493 0.6495 0.6440
QCH [26] 0.4765 0.4895 0.5050 0.5125 0.2288 0.2343 0.2368 0.2402 0.6452 0.6523 0.6685 0.6721

CCQ (ours) 0.5124 0.5161 0.5165 0.5372 0.2338 0.2349 0.2371 0.2374 0.6879 0.7081 0.7183 0.7176
I → IT CCQ (ours) 0.5074 0.5411 0.5414 0.5441 0.2512 0.2513 0.2529 0.2587 0.7063 0.6894 0.6989 0.6996

T → I

CVH [13] 0.5598 0.5217 0.5129 0.4875 0.2309 0.2219 0.2214 0.2350 0.5972 0.6032 0.5738 0.5794
IMH [20] 0.4380 0.4582 0.4186 0.4051 0.2394 0.2227 0.2333 0.1896 0.5374 0.5536 0.5513 0.5583

CorrAE [8] 0.4303 0.4501 0.4634 0.4880 0.2688 0.2928 0.3478 0.3566 0.6142 0.6198 0.6247 0.6431
CMSSH [5] 0.3783 0.3499 0.3944 0.4015 0.2926 0.2991 0.2537 0.2582 0.5868 0.5732 0.6176 0.6323
SCM [28] 0.4449 0.4859 0.5105 0.5259 0.3157 0.3698 0.4239 0.4369 0.6037 0.5998 0.5805 0.6078
QCH [26] 0.5020 0.5195 0.5489 0.5622 0.3426 0.3753 0.4411 0.4565 0.6258 0.6425 0.6485 0.6528

CCQ (ours) 0.5359 0.5410 0.5413 0.5556 0.3885 0.4000 0.4222 0.4178 0.6548 0.7026 0.7165 0.7266
T → IT CCQ (ours) 0.6022 0.6925 0.7131 0.7153 0.6355 0.6351 0.6394 0.6405 0.6942 0.7151 0.7190 0.7416

via composite quantization in isomorphic space can learn balanced
binary codes, hence its performance improves with longer codes.

It is interesting to observe that the performances of cross-modal
search task I → T is generally better than that of intra-modal search
task I → I , while this observation does not hold for the counter-
parts T → I and T → T . This seems abnormal at first sight as
cross-modal search tasks are often more challenging than intra-
modal search tasks due to semantic gap [18]. However, in general,
text retrieval is much easier than image retrieval, making different
modalities of the objects contribute differently the cross-modal re-
trieval performance. We believe that T → T is much easier than
T → I , but I → T may be easier than I → I because image-to-
image retrieval is often the most difficult task. In the case of cross-
modal task I → T , the knowledge of text modality is transferred to
image modality, making cross-modal retrieval easier. This shows
cross-modal retrieval can be improved by knowledge transfer.

The precision-recall curves and the precision@top-R curves [34,
24] are illustrated in Figure 2. For space limitation, only the results
of cross-modal tasks I → T and T → I are presented, while sim-
ilar trends of results are observed on intra-modal tasks I → I and
T → T . CCQ shows the best cross-modal retrieval performance on
all recall levels and top-R ranks. This validates that CCQ is capable
for diverse retrieval scenarios, which may emphasize higher preci-
sion at smaller number of top-R retrieved results, i.e. Web search,
or higher recall tolerating fairly lower precision, i.e. vertical search.

5.4.2 Results on Wiki
Table 2 also compares the search performance of CCQ and the

state of the art methods on the Wiki dataset, which shows that CCQ
significantly outperforms the unsupervised hashing methods CVH,
IMH, and CorrAE, and performs comparably to supervised hashing

methods SCM and QCH. A notable observation is that the MAPs
are much smaller than those on the NUS-WIDE dataset. This is rea-
sonable as the images of Wiki are of low-quality (low-resolution)
and high-diversity, i.e. the text can well describe the semantics of
the image-text pair while the image may not be well related to the
semantics of the image-text pair, which makes it more challenging
to capture the semantic correlations between image query and text
database. Note that the texts of Wiki are featured articles which are
well edited by experts and rich in semantic information, hence it is
fairly easy to correlate a text query with the multimodal database.

The precision-recall curves and the precision@top-R curves [34,
24] are demonstrated in Figure 3. Again, CCQ is among the top-
performing methods on all recall levels and all top-R ranks. A
noticeable performance drop can be examined from the precision-
recall curves to the precision@top-R curves. And this is because
the Wiki dataset is very small-scale with only 2,173 database items,
hence all relevant results will be retrieved at small R and no more
relevant results can be further retrieved when R grows too large.
This highlights the importance of evaluation with different metrics.

A crucial superiority of CCQ over the comparison methods lies
in that CCQ jointly learns the isomorphic latent space and compact
binary codes by minimizing both correlation and quantization er-
rors in a unified optimization framework, while comparison meth-
ods merely learn the isomorphic space and binary codes in a sepa-
rated two-step pipeline. As examined by CorrAE [8], the quality of
searching with binary codes using Hamming distance is evidently
inferior to searching with continuous features using Euclidean dis-
tance, due to substantial information loss by converting continuous
features to binary codes without minimizing the quantization error.
The search quality loss due to binarization is shown in Figure 5(a),
and for CCQ, we use RvTxv

n for continuous features and Cbv
n for



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

Recall

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(a) I → T @ 16 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

Recall

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(b) I → T @ 32 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Recall

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(c) T → I @ 16 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Recall

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(d) T → I @ 32 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

R (× 10
3
)

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(e) I → T @ 16 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

R (× 10
3
)

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(f) I → T @ 32 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R (× 10
3
)

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(g) T → I @ 16 bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R (× 10
3
)

P
re

c
is

io
n

 

 

CMSSH

CVH

IMH

CorrAE

SCM

QCH

CCQ (ours)

(h) T → I @ 32 bits

Figure 3: Precision-recall curves (top) and precision@R curves (bottom) on Wiki cross-modal search tasks @ 16 and 32 bits.
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Figure 4: Precision-recall curves (top) and precision@R curves (bottom) on Flickr1M cross-modal search tasks @ 16 and 32 bits.

binary codes. We see that IMH and CorrAE suffer from substantial
MAP loss (similar trends are observed from other methods) while
CCQ is almost lossless to binarization. In other words, by jointly
minimizing the correlation error and quantization error, CCQ can
circumvent information loss and learn more accurate binary codes.

5.4.3 Results on Flickr1M
In practical retrieval systems, it is crucial to process large-scale

datasets in both training and testing phases, and thus we compare
CCQ with state of the art methods on large-scale Flickr1M dataset.
We report the MAP results in Table 2 and illustrate the detailed
precision-recall curves and precision@top-R curves in Figure 4.
As mentioned before, we randomly select 10,000 image-text pairs
as training set to learn hash functions if it is computationally too de-
manding to train these methods on the complete Flickr1M dataset.
We can observe that CCQ significantly outperforms the compari-
son methods on all retrieval tasks and performs better with longer
codes. This validates the superiority of CCQ in processing large-
scale datasets, as the experimental setting on Flickr1M is consistent
with real-word system setting where a sufficiently accurate model

needs to be derived on a sufficiently large training set. We will ex-
amine CCQ’s ability to process real semi-paired data in the sequel.

5.5 Semi-Paired Data Quantization
Most of the existing methods, including the ones in comparison,

require full correspondences between different modalities. In other
words, the multimodal data objects are fully paired, e.g. image-text
pairs. As a result, these methods are unable to tackle more realis-
tic scenarios in which only a limited number of paired data points
are available. CCQ explores the idea of semi-supervised learning
and can leverage both paired data (all modalities of the objects are
available) and unpaired data (partial modalities of the objects are
available) to boost the search quality when paired data are limited.
To verify this, we consider the NUS-WIDE and Flickr1M datasets
and for each dataset, we randomly sample as the training set 1)
10,000 images without text modality, 2) 10,000 texts without im-
age modality, and 3) different numbers, i.e. [0.5, 1, 2, 4, 8] × 103,
of image-text pairs. We train CCQ with these semi-paired data and
evaluate the search performance in terms of MAP @ 32 bits.

The search performances of CCQ on NUS-WIDE and Flickr1M
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Figure 6: Efficiency verification experiments: (a)–(b) Training time and memory costs of different methods on the complete Flickr1M
dataset. CCQ with batch (mini-batch) training scales linearly (constantly) to the sample size. (c)–(d) The MAP of CCQ @ 32 bits
versus parameter λ ∈ [0.1, 200] for cross-modal retrieval tasks I → T and T → I on the NUS-WIDE, Wiki, and Flickr1M datasets.

are demonstrated in Figures 5(b) and 5(c) respectively, where solid
lines indicate training with both paired and unpaired data, and dashed
lines indicate training with only paired data. We can observe that
when the number of paired data points is small, CCQ trained with
both paired and unpaired data significantly outperforms CCQ trained
with only paired data on most of the multimodal search tasks; when
the number of paired data points increases, the search performance
of CCQ will gradually saturate while the search quality of the two
training paradigms will finally match. This clearly shows that CCQ
can effectively leverage both paired and unpaired data (partial mul-
timodal data) to boost search quality in a semi-paired data scenario.

An unexpected phenomenon is that semi-paired training slightly
deteriorates search performance on task I → T . We conjecture the
plausible reason is that searching text database with image queries
significantly relies on maximizing the image-text correlations to
bridge the semantic gap between low-level image features and high-
level image semantics, i.e. its associated texts. When the number of
paired data points is obviously smaller than the number of unpaired
data points, semi-paired training may tend to weaken correlation
learning from image-text pairs and incur performance degradation.

5.6 Search Efficiency
To search for approximate nearest neighbors (ANN) in database

for a given query, all methods in comparison perform linear scan
using symmetric or asymmetric distance. Specifically, to compare
a query vector with a database vector, CVH, IMH, and CorrAE all
compute symmetric Hamming distance via lookup tables, and CCQ
constructs a distance lookup table for each query that stores the
Euclidean distances between the query and the multiple codebooks.
As a result, CVH, IMH, CorrAE, and CCQ compute exactly the
same number of table lookups for linear scan, while their costs of
computing the query-codebook distance lookup tables are slightly
different, which can be negligible as they are infinitesimal w.r.t. the
cost of linear scan. For example, the cost of computing the distance

lookup table for CCQ takes only less than 1% of the cost for linear
scan on Flickr1M. The average search time of each query by CVH,
IMH, CorrAE, and CCQ on the Wiki, NUS-WIDE, Flickr25K, and
Flickr1M datasets is illustrated in Figure 5(d), from which we can
observe that the search efficiency are comparable for all methods.
While it is beyond the scope of this paper, we want to note that one
can adopt a Multi-Index [2] approach to achieve sub-linear search
complexity on the binary codes and further boost search efficiency.

5.7 Training Complexity
The training time and memory costs of CCQ scale linearly with

the training sample size and hence can process large-scale dataset.
To verify this, we follow [24] and use the complete Flickr1M dataset
to evaluate the consumptions of training time and memory. CMSSH
and IMH are not compared in this study since they require O(N2)
complexity and run out of either time or memory on this dataset.

The comparison of training time costs is illustrated in Figure 6(a).
We can observe that the training time of CCQ increases linearly
with respect to the sample size. Due to multiple iterations between
three sets of variables, i.e. transformation matrices Rv , quantizer
codebook C, and modal-specific binary codes Bv , CCQ is not as
efficient as CVH. However, CCQ performs much more efficiently
in time than CorrAE, which is a deep learning based method solv-
ing a time-demanding non-convex nonlinear optimization problem.

The training memory consumptions are compared in Figure 6(b).
Both batch and mini-batch (large-scale) implementations of CCQ
store the model parameters in memory, which are independent of
training dataset size. For the batch implementation, all training data
is loaded in memory, while for the mini-batch implementation, the
training data is partitioned into multiple mini-batches while only
one mini-batch is loaded in memory each time. Hence in the mini-
batch (large-scale) implementation, the memory cost stays constant
when training dataset size increases. We can flexibly allocate mem-
ory to each mini-batch to trade off memory and disk reading costs.



5.8 Parameter Sensitivity
Towards unsupervised multimodal retrieval, CCQ is designed to

involve only two parameters, dimension of modality-isomorphic
subspace D and modality trade-off weight λ, and the performance
is expected to be stable against parameter variations. Since we have
fixedD = min({Pv}Vv=1, H), we only inspect the sensitivity of λ.

We compute MAP @ 32 bits on both cross-modal retrieval tasks
by varying λ between 0.1 and 200. The performance of CCQ w.r.t.
parameter λ is shown in Figure 6(c) and 6(d). We see that CCQ can
consistently outperform all the unsupervised baseline methods by a
large margin with λ varying between 1 and 200. This validates that
CCQ is robust against parameter selection and is applicable to un-
supervised multimodal retrieval with easily-configured parameters.

6. CONCLUSION AND FUTURE WORK
In this paper, we have formally approached seamless multimodal

hashing through a novel composite correlation quantization (CCQ).
It integrates multimodal correlation and composite quantization into
a seamless latent semantic analysis (LSA) framework, which yields
compact binary codes that encode both intra-modal similarity and
inter-modal correlation. The sharing of codebooks and binary codes
across modalities enables joint learning of latent semantics that are
maximally correlated in the isomorphic feature space, which serves
as the key contributor to the efficacy of the proposed CCQ method.

In the future, we plan to equip our model with a deep learning ar-
chitecture which can learn highly abstract nonlinear representations
to better distill the correlation structures across multiple modalities.
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