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Abstract. It is a de facto practice in the deep learning community to
first pre-train a deep neural network from a large-scale dataset and then
fine-tune the pre-trained model to a specific downstream task. Recently,
both supervised and unsupervised pre-training approaches to learning
representations have achieved remarkable advances, which exploit the
discriminative knowledge of labels and the intrinsic structure of data,
respectively. It follows the natural intuition that both the discriminative
knowledge and the intrinsic structure of the downstream task can be
useful for fine-tuning. However, existing fine-tuning methods mainly
leverage the former and discard the latter. A natural question arises:
How to fully explore the intrinsic structure of data for boosting fine-
tuning? In this paper, we propose Bi-tuning, a general learning approach
that is capable of fine-tuning both supervised and unsupervised pre-
trained representations to downstream tasks. Bi-tuning generalizes the
vanilla fine-tuning by integrating two heads upon the backbone of pre-
trained representations: a classifier head with an improved contrastive
cross-entropy loss to better leverage the label information in an instance-
contrast way, and a projector head with a newly-designed categorical
contrastive learning loss to fully exploit the intrinsic structure of data
in a category-consistent way. Comprehensive experiments confirm that
Bi-tuning achieves state-of-the-art results for fine-tuning tasks of both
supervised and unsupervised pre-trained models by large margins.
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1 Introduction

In the last decade, remarkable advances in deep learning have been witnessed
in diverse applications across many fields, such as computer vision, robotic
control, and natural language processing in the presence of large-scale labeled
datasets. However, in many practical scenarios, we may have only access to a
small labeled dataset, making it impossible to train deep neural networks from
scratch. Therefore, it has become increasingly common within the deep learning
community to first pre-train a deep neural network from a large-scale dataset and
then fine-tune the pre-trained model to a specific downstream task. Fine-tuning
requires fewer labeled data, enables faster training, and usually achieves better
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performance than training from scratch [17]. This two-stage style of pre-training
and fine-tuning lays as the transfer learning foundation of various deep learning
applications.

In the pre-training stage, there are mainly two approaches to pre-train a deep
model: supervised pre-training and unsupervised pre-training. Recent years have
witnessed the success of numerous supervised pre-trained models, e.g. ResNet [18]
and EfficientNet [36], by exploiting the discriminative knowledge of manually-
annotated labels on a large-scale dataset like ImageNet [6]. Meanwhile, unsuper-
vised representation learning is recently changing the field of natural language
processing by models pre-trained with a large-scale corpus, e.g. BERT [7] and
GPT [33]. In computer vision, remarkable advances in unsupervised representa-
tion learning [40,16,3], which exploit the intrinsic structure of data by contrastive
learning [15], have also changed the field dominated chronically by supervised
pre-trained representations.

In the fine-tuning stage, transferring a model from supervised pre-trained
models has been empirically studied in [21]. During the past years, several sophis-
ticated fine-tuning methods were proposed, including L2-SP [24], DELTA [23]
and BSS [5]. These methods focus on leveraging the discriminative knowledge of
labels from the downstream task by a cross-entropy loss and the implicit bias of
pre-trained models by a regularization term. However, the intrinsic structure of
data in the downstream task is generally discarded during fine-tuning. Further,
rare attention has been paid to fine-tuning efficiently from an unsupervised
pre-trained model. In a prior study, we empirically observed that unsupervised
pre-trained representations focus more on the intrinsic structure, while supervised
pre-trained representations explain better on the label information, as shown in
Figure 3. This implies that fine-tuning unsupervised pre-trained representations
[16] would be more difficult and deserves further investigation.

Regarding to the success of supervised and unsupervised pre-training ap-
proaches, it follows a natural intuition that both discriminative knowledge and
intrinsic structure of the downstream task can be useful for fine-tuning. A question
arises: How to fully explore the intrinsic structure of data for boosting fine-tuning?
To tackle this major challenge of deep learning, we propose Bi-tuning, a general
learning approach that is capable of fine-tuning both supervised and unsupervised
pre-trained representations to downstream tasks. Bi-tuning generalizes the vanilla
fine-tuning by integrating two specific heads upon the backbone of pre-trained
representations:

– A classifier head with an improved contrastive cross-entropy loss to better
leverage the label information in an instance-contrast way, which is the dual
view of the vanilla cross-entropy loss and is expected to achieve a more
compact intra-class structure.

– A projector head with a newly-designed categorical contrastive learning loss
to fully exploit the intrinsic structure of data in a category-consistent way,
resulting in a more harmonious cooperation between the supervised and
unsupervised fine-tuning mechanisms.
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Designed as a general-purpose fine-tuning approach, Bi-tuning can be applied
with a variety of backbones without any additional assumptions. Comprehensive
experiments confirm that Bi-tuning achieves state-of-the-art results for fine-tuning
tasks of both supervised and unsupervised pre-trained models by large margins.
We justify through ablations and analyses the effectiveness of the proposed two-
heads fine-tuning architecture with their novel loss functions. Code is available
at https://github.com/thuml/Transfer-Learning-Library.

2 Related Work

2.1 Pre-training

During the past years, supervised pre-trained models achieve impressive advances
by exploiting the inductive bias of label information on a large-scale dataset like
ImageNet [6], such as GoogleNet [35], ResNet [18], DenseNet [19], EfficientNet [36]
and ViT [10], to name a few. Meanwhile, unsupervised representation learning is
recently shining in the field of natural language processing by models pre-trained
with a large-scale corpus, including GPT [33], BERT [7] and XLNet [41]. Even in
computer vision, recent advances in unsupervised representation learning [40,16,3],
which exploit the inductive bias of data structure, are shaking the long-term
dominated status of representations learned in a supervised way. Further, a
wide range of handcrafted pretext tasks have been proposed for unsupervised
representation learning, such as relative patch prediction [8], solving jigsaw puzzles
[29], colorization [43], multi-modal prediction [32], etc.

2.2 Contrastive Learning

Specifically, a variety of unsupervised pretext tasks are based on some forms of
contrastive learning, in which the instance discrimination approach [40,16,3] is
one of the most general forms. Other variants of contrastive learning methods
include contrastive predictive learning (CPC) [30] and colorization contrasting
[37]. Recent advances of deep contrastive learning benefit from contrasting positive
keys against very large number of negative keys. Therefore, how to efficiently
generate keys becomes a fundamental problem in contrastive learning. To achieve
this goal, [9] explored the effectiveness of in-batch samples, [40] proposed to use
a memory bank to store all representations of the dataset, [16] further replaced a
memory bank with the momentum contrast (MoCo) to be memory-efficient, and
[3] showed that a brute-force huge batch of keys works well. A new branch of
works [13,4] explores contrastive learning without negative keys.

2.3 Fine-tuning

Fine-tuning a model from supervised pre-trained models has been empirically
explored in [21] by launching a systematic investigation with grid search of the
hyper-parameters. During the past years, a line of fine-tuning methods have

https://github.com/thuml/Transfer-Learning-Library
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been proposed to exploit the inductive bias of pre-trained models: L2-SP [24]
drives the weight parameters of target task to the pre-trained values by imposing
L2 constraint based on the inductive bias of parameter; DELTA [23] computes
channel-wise discriminative knowledge to reweight the feature map regularization
with an attention mechanism based on the inductive bias of behavior; BSS [5]
penalizes smaller singular values to suppress nontransferable spectral components
based on singular values.

Other fine-tuning methods including learning with similarity preserving [20] or
learning without forgetting [25] also work well on some downstream classification
tasks. However, the existing fine-tuning methods mainly focus on leveraging
the knowledge of the downstream labels with a cross-entropy loss. Intuitively,
encouraging a model to capture the label information and intrinsic structure
simultaneously may help the model transition between the upstream unsupervised
models to the downstream classification tasks. In natural language processing,
GPT [33,34] has employed a strategy that jointly optimizes unsupervised training
criteria while fine-tuning with supervision. However, we empirically found that
trivially following this kind of force-combination between supervised learning loss
and unsupervised contrastive learning loss is beneficial but limited. The plausible
reason is that these two loss functions will contradict with each other and result
in a very different but not discriminative feature structure compared to that of
the supervised cross-entropy loss, as revealed by a prior study shown in Figure 3.

3 Backgrounds

It is worth noting that the principles of contrastive learning actually can date
back very far [1,15,14]. The key idea of contrastive learning is to maximize the
likelihood of the input distribution p(x|D) conditioned on the dataset D con-
trasting to the artificial noise distribution pn(x), also known as noise-contrastive
estimation (NCE). Later, [12] pointed out the relations between generative adver-
sarial networks and noise-contrastive estimation. Meanwhile, [30] revealed that
contrastive learning is related to mutual information between a query and the
corresponding positive key, which is known as InfoNCE. Considering a query q
with a large key pool K = {k0,k1,k2, · · · ,k|K|} where |K| is the number of keys,
the kind of non-parametric form [30,40] of contrastive loss can be defined as

LInfoNCE = − log
exp(q · k0/τ)∑|K|
i=0 exp(q · ki/τ)

, (1)

where τ is the temperature hyper-parameter. Note that k0 is the only positive
key that q matches while negative keys {k1,k2, · · · ,k|K|} are selected from a
dynamic queue which iteratively and progressively replaces the oldest samples
by the newly-generated keys. Intuitively, contrastive learning can be defined as
a query-key pair matching problem, where a contrastive loss is a (|K|+ 1)-way
cross-entropy loss to distinguish k0 from a large key pool. A contrastive loss is to
maximize the similarity between the query and the corresponding positive key
k0 since they are extracted from different views of the same data example.
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4 Methods

In inductive transfer learning, a.k.a. fine-tuning, we have access to a target dataset
D = {(xi, yi)}Ni=1 with N labeled examples and a pre-trained model M attained
on a large-scale source dataset. Instantiated as a deep neural network, M usually
consists of a pre-trained backbone f0 and a pre-trained head g0 whose fine-tuned
ones are denoted by f and g, respectively. Following the common practice of
fine-tuning, f is initialized as f0. Contrarily, g is usually a randomly initialized
fully-connected layer parameterized by W, since the target dataset usually has a
label space of size C different from that of pre-trained models.

4.1 Vanilla Fine-tuning of Pre-trained Representations

For each query sample xq
i from the target dataset, we can first utilize a pre-trained

feature encoder f(·) to extract its pre-trained representation as hq
i = f(xq

i ).
Without any additional assumptions, the pre-trained feature encoder f(·) can be
commonly used network backbones according to the downstream tasks, including
ResNet [18] and DenseNet [19] for supervised pre-trained models, and MoCo [16]
and SimCLR [3] for unsupervised pre-trained models.

Given a pre-trained representation hq
i , a fundamental step of vanilla fine-

tuning is to feedforward the representation hq
i into a C-way classifier g(·), in

which C is the number of categories for the downstream classification task.
Denote the parameters of the classifier g(·) as W = [w1,w2, · · · ,wC ], where wj

corresponds to the parameter for the j-th class. Given the training dataset of
the downstream task, the parameters of the classifier and the backbone can be
updated by optimizing a standard cross-entropy (CE) loss as

LCE = −
N∑
i=1

log
exp(wyi

· hq
i )∑C

j=1 exp(wj · hq
i )
. (2)

With a CE loss on the target labeled dataset, the vanilla fine-tuning approach
leverages the discriminative knowledge of labels. As later experiments revealed,
the vanilla fine-tuning approach underperforms in a low data regime since it
will easily suffer from heavy overfitting on the limited target labeled dataset.
Regarding the success of supervised and unsupervised pre-training approaches,
we realize that it is significant to further exploit the discriminative knowledge and
intrinsic structure of the downstream task for fine-tuning. To achieve this, we
propose a contrastive cross-entropy (CCE) loss on the classifier head to further
exploit the label information and a categorical contrastive learning (CCL) loss
on the projector head to capture the intrinsic structure of target data, which will
be detailed orderly in the following sections.

4.2 Classifier Head with Contrastive Cross-Entropy Loss

First, we delve into the cross-entropy loss to figure out the mechanism of how it
exploits label information. For each instance-class pair (xi, yi) on a given dataset,
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Fig. 1: The Bi-tuning approach, which includes an encoder for pre-trained
representations, a classifer head and a projector head. Bi-tuning enables a dual
fine-tuning mechanism: a contrastive cross-entropy (CCE) loss on the classifier
head to exploit label information and a categorical contrastive learning (CCL)
loss on the projector head to capture the intrinsic structure of target data.

the predicted output of the fine-tuned model is a probability vector of size C
where C is the number of categories. From another perspective, the cross-entropy
loss of vanilla fine-tuning can be regarded as a class-wise championship, i.e., the
category that is the same as the ground-truth label of each instance is expected to
win the game. As revealed in Figure 1, to find the correct class, the cross-entropy
loss performs column-wise championship for each instance.

To further exploit the label information of the downstream task, we propose
an alternative form of the conventional cross-entropy loss on the classifier head,
named contrastive cross-entropy loss LCCE. Correspondingly, LCCE performs a
row-wise championship for each class while LCE is a column-wise championship
for each instance. Instead of operating loss computation along the class dimension
(i.e., the number of classes C), LCCE operates along the key-set dimension (i.e.,
the number of keys K + 1). As an instance-wise championship in LCCE, the
instance nearest to the prototype of each class is expected to win the game. For
each sample (xi, yi) in the target dataset, the representation encoded by f is hi.
For clarity, we focus on a particular data example (x, y) and omit the subscript
i. The proposed LCCE for each data example is formulated as

LCCE = − 1

|Kp|
∑

h+∈Kp

log
exp(wy · h+/τ)∑

h∈Kp∪Kn
exp(wy · h/τ)

, (3)

where Kp is the positive key set, Kn is the negative key set, and τ is the
hyper-parameter for temperature scaling. Note that, Kp consists of k0 and
keys with the same label y where k0 is extracted from a differently augmented
view of the query q. On the contrary, Kn includes examples from other classes
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{1, 2, · · · , C}\y. Here, h’s are samples from the hidden key pool produced by
the key generating mechanism (except hq). Without loss of generality, we adopt
the key generating approach in Momentum Contrast (MoCo) [16] as our default
one due to its simplicity, high-efficacy, and memory-efficient implementation. In
summary, by encouraging instances in the training dataset to approach towards
their corresponding class prototypes (feature center of the same-label samples),
LCCE further exploits the label information of the target dataset and tends to
achieve a more compact intra-class structure than the vanilla fine-tuning.

4.3 Projector Head with Categorical Contrastive Learning Loss

Till now, we have proposed the contrastive cross-entropy loss on the classifier
head to fully exploit the label information. However, this kind of loss function
may still fall short in capturing the intrinsic structure. Inspired by the remarkable
success of unsupervised pre-training, which also aims at modeling the intrinsic
structure in data, we first introduce a projector ϕ(·) which is usually off the
shelf to embed a pre-trained representation hq

i into a latent metric space as zqi .
Intuitively, we apply the standard contrastive learning loss (InfoNCE) defined
in Eq. (1) on the target dataset to capture intrinsic structure in data. However,
the InfoNCE loss assumes that there is a single key k+ (also denoted as k0)
in the dictionary to match the given query q, which implicitly requires every
instance to belong to an individual class. In other words, it regards every sample
in the key pool as a negative sample except k+, which requires minimizing the
similarity between the query with all negative samples. Yet, from the perspective
of discriminative learning, we should maximize inter-class distance but minimize
intra-class distance. As a consequence, those samples with the same class as
the query sample should not be treated as negative samples, and the similarity
between them should be maximized.

As aforementioned, if we simply apply InfoNCE loss on the labeled downstream
dataset, it will result in an extremely different but not discriminative feature
structure compared with that of the supervised cross-entropy loss, making the
classifier struggle. Obviously, this dilemma reveals that the naive combination
of the supervised cross-entropy loss and the unsupervised contrastive loss is not
an optimal solution for fine-tuning, which is also backed by our experiments in
Table 3. To capture the label information and intrinsic structure simultaneously,
we propose a novel categorical contrastive loss LCCL on the projector head
based on the following hypothesis: when we fine-tune a pre-trained model to
a downstream task, it is reasonable to regard other keys in the same class as
the positive keys that the query matches. In this way, LCCL expands the scope
of positive keys from single instance to a set of instances, resulting in more
harmonious collaboration between the supervised and unsupervised learning
mechanisms. Similar to the format of the InfoNCE loss, LCCL is defined as

LCCL = − 1

|Kp|
∑

z+∈Kp

log
exp(zq · z+/τ)∑

z∈Kp∪Kn
exp(zq · z/τ)

, (4)
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with notations in parallel to that of Eq. (3). Note that the sum is taken over
all positive keys, indicating that there may be more than one positive key for a
single query, i.e., |Kp| ≥ 1.

We provide an intuitive explanation of why LCCL is complementary to vanilla
fine-tuning. While using the standard cross-entropy loss, we can learn a hyperplane
for discriminating each class from the other classes, and the instances of each
class are only required to be far away from its associated hyperplane—they are
not required to form into a compact structure in the metric space. As for the
proposed categorical contrastive loss, besides requiring the instances of each
class to stay far away from those of the other classes, we further require that
they should form a compact structure in the metric space. This is exactly the
advantage of contrast-by-metric over discriminate-by-hyperplane, which better
facilitates the fine-tuning on downstream task.

4.4 Optimization Objective of Bi-Tuning

Finally, we reach a novel fine-tuning approach for efficient transfer from both
supervised and unsupervised pre-trained models. Due to the dual-head design,
the approach is coined Bi-tuning, which jointly optimizes the contrastive cross-
entropy loss on classifier head and the categorical contrastive learning loss on
projector head, as well as the standard cross-entropy loss, in an end-to-end deep
architecture. The overall loss function of Bi-tuning is

min
Θ={f,g,ϕ}

LCE + LCCE + LCCL, (5)

where Θ denotes the parameters of the encoder f , the classifier head g and
the projector head ϕ. Desirably, since the magnitude of the above loss terms is
comparable, we empirically find that there is no need to introduce any extra
hyper-parameters to trade-off them. This simplicity makes Bi-tuning easy to be
applied to different datasets or tasks. The full portrait of Bi-tuning is shown in
Figure 1.

5 Experiments

We follow the common fine-tuning principle described in [42], replacing the
last task-specific layer in the classifier head with a randomly initialized fully
connected layer whose learning rate is 10 times of that for pre-trained parameters.
Meanwhile, the projector head is set to be another randomly initialized fully
connected layer. For the key generating mechanisms, we follow the style in [16],
employing a momentum contrast branch with a default momentum coefficient
m = 0.999 and two cached queues both normalized by their L2-norm [40] with
dimensions of 2048 and 128 respectively. For each task, the best learning rate is
selected by cross-validation under a 100% sampling rate and applied to all four
sampling rates. Queue size K is set as 8, 16, 24, 32 for each category according
to the dataset scales, respectively. Other hyper-parameters in Bi-tuning are
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Table 1: Top-1 accuracy on various datasets using ResNet-50 by supervised pre-
training.

Dataset Method Sampling Rates
25% 50% 75% 100%

CUB

Fine-tuning 61.36±0.11 73.61±0.23 78.49±0.18 80.74±0.15
L2SP [24] 61.21±0.19 72.99±0.13 78.11±0.17 80.92±0.22
DELTA [23] 62.89±0.11 74.35±0.28 79.18±0.24 81.33±0.24
BSS [5] 64.69±0.31 74.96±0.21 78.91±0.15 81.52±0.11
Bi-tuning 67.47±0.08 77.17±0.13 81.07±0.09 82.93±0.23

Cars

Fine-tuning 56.45±0.21 75.24±0.17 83.22±0.17 86.22±0.12
L2SP [24] 56.29±0.21 75.62±0.32 83.60±0.13 85.85±0.12
DELTA [23] 58.74±0.23 76.53±0.08 84.53±0.29 86.01±0.37
BSS [5] 59.74±0.14 76.78±0.16 85.06±0.13 87.64±0.21
Bi-tuning 66.15±0.20 81.10±0.07 86.07±0.23 88.47±0.11

Aircraft

Fine-tuning 51.25±0.18 67.12±0.41 75.22±0.09 79.18±0.20
L2SP [24] 51.07±0.45 67.46±0.22 75.06±0.45 79.07±0.21
DELTA [23] 53.71±0.30 68.51±0.24 76.51±0.55 80.34±0.14
BSS [5] 53.38±0.22 69.19±0.18 76.39±0.22 80.83±0.32
Bi-tuning 58.27±0.26 72.40±0.22 80.77±0.10 84.01±0.33

fixed for all experiments. The temperature τ in Eq. (3) and Eq. (4) is set as
0.07 [40]. The trade-off coefficients between these three losses are kept as 1 since
the magnitude of the loss terms is comparable. All tasks are optimized using
SGD with a momentum 0.9. All results in this section are averaged over 5 trials,
and standard deviations are provided.

5.1 Supervised Pre-trained Representations

Standard benchmarks. We first verify our approach on three fine-grained
classification benchmarks: CUB-200-2011 [38] (with 11788 images for 200 bird
species), Stanford Cars [22] (containing 16185 images of 196 classes of cars) and
FGVC Aircraft [28] (containing 10000 samples 100 different aircraft variants).
For each benchmark, we create four configurations which randomly sample
25%, 50%, 75%, and 100% of training data for each class respectively, to reveal
the detailed effect while fine-tuning to different data scales. We choose recent fine-
tuning technologies: L2-SP [24], DELTA [23], and the state-of-the-art method
BSS [5], as competitors of Bi-tuning while regarding vanilla fine-tuning as a
baseline. Note that vanilla fine-tuning is a strong baseline when sufficient data
is provided. Results are averaged over 5 trials. As shown in Table 1, Bi-tuning
significantly outperforms all competitors across all three benchmarks by large
margins (e.g. 10.7% absolute rise on CUB with a sampling rate of 25%). Note
that even under 100% sampling rate, Bi-tuning still outperforms others.
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Table 2: Top-1 accuracy on COCO-70 dataset using DenseNet-121 by supervised
pre-training.

Method Sampling Rates
25% 50% 75% 100%

Fine-tuning 80.01±0.25 82.50±0.25 83.43±0.18 84.41±0.22
L2SP [24] 80.57±0.47 80.67±0.29 83.71±0.24 84.78±0.16
DELTA [23] 76.39±0.37 79.72±0.24 83.01±0.11 84.66±0.08
BSS [5] 77.29±0.15 80.74±0.22 83.89±0.09 84.71±0.13
Bi-tuning 80.68±0.23 83.48±0.13 84.16±0.05 85.41±0.23

Large-scale benchmarks. Previous fine-tuning methods mainly focus on
improving performance under low-data regime paradigms. We further extend
Bi-tuning to large-scale paradigms. We use annotations of the COCO dataset
[26] to construct a large-scale classification dataset, cropping object with padding
for each image and removing minimal items (with height and width less than 50
pixels), resulting in a large-scale dataset containing 70 classes with more than 1000
images per category. The scale is comparable to ImageNet in terms of the number
of samples per class. On this constructed large-scale dataset named COCO-70,
Bi-tuning is also evaluated under four sampling rate configurations. Since even
the 25% sampling rate of COCO-70 is much larger than each benchmark in
Section 5.1, previous fine-tuning competitors show micro contributions to these
paradigms. Results in Table 2 reveal that Bi-tuning brings general gains for
all tasks. We hypothesize that the intrinsic structure introduced by Bi-tuning
contributes substantially.

5.2 Unsupervised Pre-trained Representations

Representations of MoCo [16]. In this round, we use ResNet-50 pre-trained
unsupervisedly via MoCo on ImageNet as the backbone. Since suffering from
the large discrepancy between unsupervised pre-trained representations and
downstream classification tasks as demonstrated in Figure 3, previous fine-tuning
competitors usually perform very poorly. Hence we only compare Bi-tuning to
the state-of-the-art method BSS [5] and vanilla fine-tuning as baselines. Besides,
we add two intuitively related baselines: (1) GPT*, which follows a GPT [33,34]
fine-tuning style but replaces its predictive loss with the contrastive loss; (2)
Center loss, which introduces compactness of intra-class variations [39] that
is effective in recognition tasks. As reported in Table 3, trivially borrowing fine-
tuning strategy in GPT [33] or center loss brings tiny benefits, and is even harmful
on some datasets, e.g. CUB. Bi-tuning yields consistent gains on all fine-tuning
tasks of unsupervised representations.

Other unsupervised pre-trained representations. To justify Bi-tuning’s
general efficacy, we extend our method to unsupervised representations by other
pre-training methods. Bi-tuning is applied to MoCo (version 2) [16], SimCLR [3],
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Table 3: Top-1 accuracy on various datasets using ResNet-50 unsupervised pre-
training by MoCo.

Dataset Method Sampling Rates
25% 50% 75% 100%

CUB

Fine-tuning 38.57±0.13 58.97±0.16 69.55±0.18 74.35±0.18
GPT* [34] 36.43±0.17 57.62±0.14 67.82±0.05 72.95±0.29
Center [39] 42.53±0.41 62.15±0.51 70.86±0.39 75.61±0.33
BSS [5] 41.73±0.14 59.15±0.21 69.93±0.19 74.16±0.09
Bi-tuning 50.54±0.23 66.88±0.13 74.27±0.05 77.14±0.23

Cars

Fine-tuning 62.40±0.26 81.55±0.36 88.07±0.19 89.81±0.48
GPT* [34] 65.83±0.27 82.39±0.17 88.62±0.11 90.56±0.18
Center [39] 67.57±0.12 82.78±0.30 88.55±0.24 89.95±0.1
BSS [5] 62.13±0.22 81.72±0.22 88.32±0.17 90.41±0.15
Bi-tuning 69.44±0.32 84.41±0.07 89.32±0.23 90.88±0.13

Aircraft

Fine-tuning 58.98±0.54 77.39±0.31 84.82±0.24 87.35±0.17
GPT* [34] 60.70±0.08 78.93±0.17 85.09±0.10 87.56±0.15
Center [39] 62.23±0.09 79.30±0.14 85.20±0.41 87.52±0.20
BSS [5] 60.13±0.32 77.98±0.29 84.85±0.21 87.25±0.07
Bi-tuning 63.16±0.26 79.98±0.22 86.23±0.29 88.55±0.38

InsDisc [40], Deep Cluster [2], CMC [37] on Car dataset with 100% training data.
Table 4 is a strong signal that Bi-tuning is not bound to specific pre-training
pretext tasks.

Analysis on components of contrastive learning. Recent advances in
contrastive learning, i.e. momentum contrast [16] and memory bank [40] can be
plugged into Bi-tuning smoothly to achieve similar performance and the detailed
discussions are deferred to Appendix. Previous works [16,3] reveal that a large
amount of contrasts is crucial to contrastive learning. In Figure 2(a), we report
the sensitivity of the numbers of sampling keys in Bi-tuning (MoCo) under 25%
and 100% sampling ratio configurations. Note that CUB has various categories
with a few images in each category. We let K balancedly sampled from every
category to simplify our analysis here. Figure 2(a) shows that though a larger key
pool is beneficial, we cannot expand the key pool due to the limit of training data,
which may lose sampling stochasticity during training. This result suggests that
there is a trade-off between stochasticity and a large number of keys. [3] pointed
out that the dimension of the projector also has a big impact. The sensitivity of
the dimension of the projector head is also presented in Figure 2(b). Note that
the unsupervised pre-trained model (e.g., MoCo) may provide an off-the-shelf
projector, fine-tuning or re-initializing it is almost the same (90.88 vs. 90.78 on
Car when L is 128).

https://github.com/ConnorZhong/Bi-Tuning
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Table 4: Top-1 accuracy on Car dataset (100%) with different unsupervised pre-
trained representations.

Pre-training Method Fine-tuning Bi-tuning

Deep Cluster [2] 83.90±0.48 87.71±0.34
InsDisc [40] 86.59±0.22 89.54±0.25
CMC [37] 86.71±0.62 88.35±0.44
MoCov2 [16] 90.15±0.48 90.79±0.34
SimCLR(1×) [3] 89.30±0.18 90.84±0.22
SimCLR(2×) [3] 91.22±0.19 91.93±0.19
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Fig. 2: Sensitivity analysis of hyper-parameters K and L for Bi-tuning.

5.3 Collaborative Effect of Loss Functions

As shown in Table 5, using either contrastive cross-entropy (CCE) or categorical
contrastive (CCL) with vanilla cross-entropy (CE) already achieves relatively
good results. These experiments prove that there is collaborative effect between
CCE and CCL loss empirically. It is worth mentioning that CCE and CCL can
work independently of CE (see the fourth row in Table 5), while we optimize
these three losses simultaneously to yield the best result. As discussed in prior
sections, we hypothesize that Bi-tuning helps fine-tuning models characterize the
intrinsic structure of training data when using CCE and CCL simultaneously.

5.4 Interpretable Visualization of Representations

We use a popular visualization tool proposed in [11] to give a interpretable
visualization as shown in Figure 3. Note that 3(a) is the original image, Figure
3(b), Figure 3(c) and Figure 3(d) are respectively obtained from a randomly
initialized model, a supervised pre-trained model on ImageNet, and an unsuper-
vised pre-trained model via MoCov1 [16]. We infer that supervised pre-training
will obtain representations focusing on the discriminative part and ignoring
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Table 5: Collaborative effect in Bi-tuning on CUB-200-2011 using ResNet-50
pre-trained by MoCo.

Loss Function Sample Rate
CE CCE CCL 25% 50% 75% 100%

✓ ✗ ✗ 38.57±0.13 58.97±0.16 69.55±0.18 74.35±0.18
✓ ✓ ✗ 45.42±0.11 64.33±0.28 71.56±0.30 75.82±0.21
✓ ✗ ✓ 41.09±0.23 60.77±0.31 70.30±0.29 75.30±0.20
✗ ✓ ✓ 47.70±0.41 64.77±0.15 71.69±0.11 76.54±0.24
✓ ✓ ✓ 50.54±0.23 66.88±0.13 74.27±0.05 77.12±0.23

(a) Original (b) Random (c) Supervised (d) MoCo (e) Bi-tuning

Fig. 3: Interpretable visualization of learned representations via various training
methods.

the background part. In contrast, unsupervised pre-training pays uninformative
attention to every location of an input image. This could be the reason that why
fine-tuning unsupervised representations is harder than their supervised coun-
terparts. Impressively, Bi-tuning in 3(e) captures both local details and global
category-structures. Bi-tuning benefits from both the supervised discriminative
knowledge and the unsupervised intrinsic structure. And this is the reason why
Bi-tuning works well.

5.5 Visualization by t-SNE

We train the t-SNE [27] visualization model on the MoCo representations fine-
tuned on Pets dataset [31]. Visualization of the validation set is shown in Figure 4.
Note that representations in Figure 4(a) do not present good classification
structures. Figure 4(c) suggests that forcefully combining the unsupervised loss
as GPT [34] may cause conflict with CE and clutter the classification boundaries.
Figure 4(d) suggests that Bi-tuning encourages the fine-tuning model to learn
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(a) MoCo Representations (b) Fine-tuning with CE

(c) Fine-tuning with GPT* (d) Bi-tuning

Fig. 4: T-SNE [27] of representations on Pets [31].

better intrinsic structure besides the label information. Therefore, Bi-tuning
presents the best classification boundaries as well as intrinsic structures.

6 Conclusion

In this paper, we propose a general Bi-tuning approach to fine-tuning both
supervised and unsupervised representations. Bi-tuning generalizes the standard
fine-tuning with an encoder for pre-trained representations, a classifier head and
a projector head for exploring both the discriminative knowledge of labels and
the intrinsic structure of data, which are trained end-to-end by two novel loss
functions. Bi-tuning yields state-of-the-art results for fine-tuning tasks on both
supervised and unsupervised pre-trained models by large margins.
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