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Abstract

Regression, as a counterpart to classification, is a
major paradigm with a wide range of applications.
Domain adaptation regression extends it by gener-
alizing a regressor from a labeled source domain
to an unlabeled target domain. Existing domain
adaptation regression methods have achieved pos-
itive results limited only to the shallow regime. A
question arises: Why learning invariant represen-
tations in the deep regime less pronounced? A
key finding of this paper is that classification is
robust to feature scaling but regression is not, and
aligning the distributions of deep representations
will alter feature scale and impede domain adapta-
tion regression. Based on this finding, we propose
to close the domain gap through orthogonal bases
of the representation spaces, which are free from
feature scaling. Inspired by Riemannian geometry
of Grassmann manifold, we define a geometrical
distance over representation subspaces and learn
deep transferable representations by minimizing
it. To avoid breaking the geometrical properties
of deep representations, we further introduce the
bases mismatch penalization to match the order-
ing of orthogonal bases across representation sub-
spaces. Our method is evaluated on three domain
adaptation regression benchmarks, two of which
are constructed in this paper. Our method outper-
forms the state-of-the-art methods significantly,
forming early positive results in the deep regime.

1. Introduction
The regression paradigm is proposed to formalize the tasks
of predicting continuous values from each instance. As one
of the main paradigms in machine learning, regression tasks
attract parallel attention as classification tasks. Problems at-
tributed to regression tasks arise widely in real applications,
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such as object localization, image registration, human pose
estimation, to name a few (Lathuilière et al., 2019).

Deep learning has made remarkable changes in diverse re-
gression applications across many fields. Nonetheless, train-
ing high-quality deep models relies on large-scale labeled
datasets. And in many real-world regression applications,
precisely annotating abundant training instances is time-
consuming and laborious. A solution to this problem is
leveraging off-the-shelf labeled data from a relevant domain
and applying domain adaptation approaches to overcome
the domain shift or dataset bias (Shimodaira et al., 2009).
There are many pioneers hammering at tackling domain
adaptation regression (DAR) problem at the theoretical or
algorithmic level. Mansour et al. (2009) and Cortes & Mohri
(2011) conducted extensive theoretical analyses of the DAR
problem. Meanwhile, a series of algorithms are proposed
for the DAR problem. These methods focus on importance
weighting (Geng et al., 2007; Guo et al., 2008; Yamada
et al., 2014) or learning invariant representations (Cao et al.,
2010; Pan et al., 2011) in the shallow regime, achieving im-
pressive improvements and bringing inspiration for future
works. However, most methods rely on labeled target data.
And there are rare DAR approaches in the deep regime.

Recent studies reveal that deep networks are able to learn
representations generically useful across a variety of tasks
(Yosinski et al., 2014). Inspired by this, deep domain adapta-
tion methods have achieved remarkable advances in domain
adaptation classification (DAC) problems. In light of these
developments in DAC, a natural question arises: Why learn-
ing invariant representations in the deep regime for DAR
less pronounced? An essential question is: what is the vital
difference between classification and regression during the
representation learning process?

Intuitively, their essential difference lies in the loss function.
A commonly used loss function in regression is squared
loss (L2), while in classification it is cross-entropy loss
(CE) with softmax activation function. Softmax allows the
activation values of different categories to compete with
each other. Introducing this competition mechanism can
make classifiers quickly adapt to change in feature scales.
However, in regression tasks, regressors may not have such
adaptability. To further explore this property, we conduct an
exploratory study to verify the effect of feature scaling on
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Figure 1. (a) Accuracy and feature scale in Office-31. (b) MAE and feature scale in MPI3D. (c) Change of feature scale by two methods.

classifiers or regressors.

We first test the impact of the Frobenius norm of feature
matrix on task performances in both classification and re-
gression settings. For classification tasks, we use the most
popular domain adaptation dataset: Office-31 (Saenko et al.,
2010), and for regression tasks, we use MPI3D (Gondal
et al., 2019). First, we test the robustness of experimental
performances to the change of feature scale. Specifically,
we use L2 regularization to change the Frobenius norm of
feature matrix. Results in classification are shown in Figure
1(a) and those in regression are shown in Figure 1(b). An
important observation is that classification performances
are more robust to feature scaling, while regression perfor-
mances are not. This means that performance degradation
is a risk when feature scale in terms of Frobenius norm is
affected by regularization terms other than the supervised
learning loss in the representation learning process.

Most transferable representation learning methods for do-
main adaptation classification (DAC) are able to reduce the
distribution discrepancy based on instance representations.
Two popular methods, Domain Adversarial Neural Network
(DANN) (Ganin et al., 2016) and Adaptive Feature Norm
(AFN) (Xu et al., 2019) are used to test the change of Frobe-
nius norm of feature matrix on three transfer regression tasks
from the source domain. Results are shown in Figure 1(c).
An important observation is that these domain adaptation
classification methods significantly change the feature scale,
leading to the risk of performance degradation in regression.
More experimental details are included in Appendix.

Based on these observations, we investigate how to learn
transferable representation for domain adaptation regression
(DAR) from a new perspective of preserving the feature
scale. Different from the previous instance-based distance
reduction approaches, we try to solve this problem by explor-
ing the Riemannian geometry of the Grassmann manifold.
In the transferable representation learning process, each in-
stance representation vector has its direction and magnitude.
Note that matching distributions using instance representa-
tion has the risk of changing the feature scale. Importantly,
each feature matrix is a point in the Grassmannian, whose

bases are unit vectors. Matching bases can reduce distance
between subspaces but will not change feature scale.

In light of this, we explore the principal angles, a subspace
similarity in the Riemannian geometry of Grassmann mani-
fold. Based on that, we define a new geometrical distance,
called Representation Subspace Distance (RSD). The satis-
faction to all axioms for a general metric is proved. Thus
RSD can be exploited to enable transferable representation
learning without changing feature scale. Meanwhile, the
definition of RSD has a disadvantage under the scenarios of
deep representation learning: it does not take the ordering of
the importance of each orthonormal basis into consideration.
Our observation is that equally important bases in different
subspaces tend to have similar semantic information. In
other words, it is unreasonable to match an important basis
in one subspace with an unimportant basis in another sub-
space. To this end, we propose Bases Mismatch Penalization
(BMP) to constrain similarly ranked bases in each subspace
to match together when calculating the new distance. By
minimizing both RSD and BMP, transferable representation
learning can be enabled to improve DAR performance.

This paper has the following three contributions:

• We identify two key findings: regression performances
are not robust to feature scaling, and transferable repre-
sentation learning in domain adaptation classification
(DAC) is at the risk of changing feature scale.

• We propose to match orthogonal bases to close domain
shift without changing feature scale. Specifically, we
propose Representation Subspace Distance (RSD), a
new geometrical distance satisfying all key axioms
for a general metric. We propose a novel regularizer,
Bases Mismatch Penalization (BMP), to constrain sim-
ilarly ranked bases in each subspace to match together
when calculating the distance across subspaces. These
two loss functions facilitate transferable representation
learning to boost domain adaptation regression (DAR).

• We construct two new benchmarks for deep DAR. Our
method outperforms state-of-the-arts by huge margins
on both two benchmarks and a pose estimation dataset.
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2. Related Work
Domain Adaptation Regression (DAR). Mansour et al.
(2009) discuss domain adaptation theory in both classifi-
cation and regression settings, and Cortes & Mohri (2011)
conduct an extensive theoretical analysis for DAR. Mean-
while, a series of algorithms are proposed for the DAR
problem. These methods focus on importance weighting
(Geng et al., 2007; Guo et al., 2008; Yamada et al., 2014;
de Mathelin et al., 2020) or learning invariant representa-
tions (Cao et al., 2010; Pan et al., 2011; Courty et al., 2017;
Nikzad-Langerodi et al., 2020) in the shallow regime. Nev-
ertheless, most of them need to use a small number of target
domain labels to boost performances. Besides, Teshima
et al. (2020) solve few-shot supervised domain adaptation
problem by causal mechanism transfer. Under the frame-
work of deep representation learning, Singh & Chakraborty
(2020) leverage unlabeled data and adopt the widely used
Maximum Mean Discrepancy (MMD) metric as well as a
semi-supervised loss to strengthen the smoothness of the
prediction function in the deep regime. However, it depends
on labeled target data, and the semi-supervised loss con-
tributes a considerable part of the improvement. Without
using labeled target data, there is still a lack of explicit
solutions to the core problem of DAR when dealing with
complex regression problems under the framework of deep
representation learning.

Domain Adaptation Classification (DAC). Domain
adaptation, as a basic problem to learn from non-iid data,
addresses the problem of learning a model that reduces the
distribution discrepancy between training and testing distri-
butions (Shimodaira et al., 2009). Early domain adaptation
methods in the shallow regime learn invariant representa-
tions across domains (Pan et al., 2011; Gong et al., 2012)
or reweigh source instances based on their correlation to
the target domain (Huang et al., 2007; Gong et al., 2013).
It is worth noting that Gopalan et al. (2011), Gong et al.
(2012) and Zheng et al. (2012) propose geometrical ap-
poarches to learn invariant representations. They all use
the geodesic distance as the subspace distance and achieved
good results, but their flaw is that the geodesic distance can-
not be minimized because the subspaces are fixed. Recent
studies reveal that deep networks are able to learn represen-
tations generically useful across a variety of tasks (Yosinski
et al., 2014). Inspired by that, recent DAC methods in the
deep regime simultaneously explore two approaches for
learning transferable representations across domains. One
approach is moment matching, which reduces the distribu-
tion discrepancy by matching statistics from two different
distributions (Long et al., 2015; Li et al., 2016; Long et al.,
2017; Maria Carlucci et al., 2017). The other approach is
adversarial learning, inspired by generative adversarial nets
(Goodfellow et al., 2014). A minimax game is built to di-
rectly close the domain gap, which takes the supremum of

a proper function over the hypothesis space as distribution
discrepancy, while feature representations are learned to
reduce the discrepancy simultaneously (Ganin & Lempit-
sky, 2015; Tzeng et al., 2015; Ganin et al., 2016; Tzeng
et al., 2017; Luo et al., 2017; Long et al., 2018; Zhang et al.,
2019; Peng et al., 2019). Remarkable performance gains are
yielded by these transferable representation learning meth-
ods in DAC. And many of the mentioned DAC methods
can be naturally extended to DAR problems, we will verify
their effectiveness in experiments. As a conclusion, deep
learning lays strong foundations to solve complex domain
adaptation problems.

Inspired by (Chen et al., 2019), we use spectral analysis
methods to explore this problem in depth. We find that
regression performances are not robust to feature scaling.
And deep domain adaptation approaches closing domain gap
based on instance representation have the risk of changing
feature scale. Thus we tackle this challenge from a new
perspective and make use of subspace similarity, a kind of
Riemannian geometry, to define a geometrical distance for
learning transferable representations. Further, we preserve
the geometrical structure of deep representations by a new
regularizer. To our knowledge, this work sheds the first light
on designing effective deep DAR algorithms.

3. Approach
In this paper, we study the unsupervised domain adaptation
problem in the scenario of regression (DAR). During train-
ing, we are given ns labeled examples from a source domain
Ds = {(xs

i ,y
s
i )} and nt unlabeled examples from a target

domain Dt = {(xt
i)}. Examples from different domains

are sampled from different distributions P and Q respec-
tively, and the i.i.d. (independent and identically distributed)
assumption of standard learning is violated, i.e. P 6= Q.

3.1. Motivation

As we stated in Section 1, to lower the generalization error
in the target regression tasks, learning transferable represen-
tations by closing the domain shift without changing feature
scale is the key idea to make DAR work in the deep regime.

In common deep domain adaptation models, there exists
a feature extractor denoted by Gf . Deep representation is
learned by the feature extractor, formalized as fi = Gf (xi).
A superscript is adopted to distinguish the feature vector fsi
from the source domain and that f ti from the target domain.
During training, each batch feature matrix Fs = [fs1 . . . f

s
b ]

is composed of a batch size b of feature vectors. The Frobe-

nius norm of feature matrix ||Fs||F =

√
Tr((Fs)

T
Fs) =√∑b

i=1 σ
s
i , where Tr is trace, σs

i is the i-th singular value.
This means that the Frobenius norm of feature matrix is only
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1 is corresponding weight vector.

influenced by its singular values. Thus we can use a general
geometrical tool, Singular Value Decomposition (SVD), to
obtain the orthonormal bases U and singular values Σ of
the feature matrices in both source and target domain:

Fs = UsΣs(Vs)T, Ft = UtΣt(Vt)T. (1)

Here, matrix Us is composed of orthonormal bases in source
representation subspace S and matrix Ut is composed of
orthogornal bases in target representation subspace T . Our
aim is to close the domain gap without using singular values,
thereby not changing the Frobenius norm of feature matrix.
Inspired by Riemannian geometry of Grassmann manifold,
we can only use orthogonal bases to achieve this goal.

3.2. Principal Angles

To measure the similarity of two b-dimensional subspaces
S and T of Rn on the Grassmannian Gr(b, n), the basic
concept is to calculate the similarity of orthonormal bases
from two subspaces globally (Golub & Van Loan, 1996).
A direct measurement is to use the principal angles, whose
definition is as follows:

θS↔T1 = min
us

1∈S,ut
1∈T

arccos

(
(us

1)
T
ut
1

‖us
1‖ ‖ut

1‖

)
,

θS↔T2 = min
us
2∈S,u

t
2∈T

us
2⊥us

1,ut
2⊥ut

1

arccos

(
(us

2)
T
ut
2

‖us
2‖ ‖ut

2‖

)
,

...

θS↔Tb = min
us
b
∈S,ut

b
∈T

us
b
⊥us

1,...,us
b−1

ut
b
⊥ut

1,...,ut
b−1

arccos

(
(us

b)
T
ut
b

‖us
b‖ ‖ut

b‖

)
,

(2)

where Us = [us
1, . . . ,u

s
b] and Ut = [ut

1, . . . ,u
t
b] are the

orthonormal bases in the b-dimensional subspaces S and
T , respectively. When the principal angles Θ = [θ1,...,θb]

are all zero, the subspaces spanned by the two groups of
orthogonal bases are exactly the same.

3.3. Representation Subspace Distance

It is straightforward to define a geometrical distance on the
Grassmann manifold with the above similarity measurement.
As an effective metric on the manifold, the new distance
should satisfy all necessary axioms for a general metric.

Definition 1 (Representation Subspace Distance, RSD).
The Representation Subspace Distance (RSD) between two
m-dimensional subspaces S and T is the sum of the sine
values of all principal angles,

disS↔TRSD (Us,Ut) =
∥∥sinΘS↔T

∥∥
1
=

m∑
i=1

sin θS↔Ti . (3)

Further, we prove that the new geometrical distance satisfies
the three axioms for a general metric:

Theorem 1. The Representation Subspace Distance (RSD)
satisfies the three axioms for a general metric, to be specific,
it satisfies the following conditions:

(1) disS↔TRSD ≥ 0, and disS↔TRSD = 0 if and only if S = T ;

(2) disS↔TRSD = disS↔TRSD (symmetric);

(3) disS↔TRSD ≤ disS↔ARSD + disT↔ARSD (triangle inequality).

Due to space limitation, we will defer proofs in Appendix.
With the guarantee of these three properties, Representa-
tion Subspace Distance (RSD) can be used to measure the
discrepancy between subspaces on the Grassmann manifold.

Golub & Van Loan (1996) present a neat way to calculate all
principal angles using those orthonormal bases and SVD:

(Us)
T
Ut = Ps

(
diag(cosΘS↔T )

)
(Pt)T, (4)

where cosΘS↔T is all the cosine values of principal angles
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between S and T . With the principal angles, we can easily
compute RSD between S and T using Equation (3).

3.4. Bases Mismatch Penalization

Directly minimizing RSD can reduce the distance between
the source representation subspace S and the target represen-
tation subspace T . However, another key property, i.e. the
ordering of the orthogonal bases, should be considered to
preserve the geometrical property of deep representations.

Foremost, we delve into the SVD process in Equation (4).
For simplicity, we describe how the smallest principal angle
θS↔T1 between two subspaces S and T is obtained when
each subspace is composed of three orthogonal bases in
Figure 2. The smallest principal angle θS↔T1 is the angle
between principal vector Usps

1 in S and principal vector
Utpt

1 in T . Principal vectors, which are used to calculate
principal angles, are weighted sums of all orthogonal bases.
The weight matrix is Ps in S and Pt in T , which are easily
obtained by SVD in Equation (4).

Based on the calculation process of principal angles in Fig-
ure 2, we can find the fact that in disS↔TRSD (Us,Ut), we do
not consider the ordering of importance of each orthogo-
nal basis (ordering of singular values in Equation (1)). An
important observation is that most principal vectors are dom-
inated by a specific orthogonal basis instead of more orthog-
onal bases. If the first principal vector Usps

1 in S is domi-
nated by a top-ranked orthogonal basis and the first principal
vector Utpt

1 in T is dominated by a bottom-ranked orthog-
onal basis, then these two bases of different importance
will be matched by minimizing disS↔TRSD (Us,Ut). However,
different orthogonal bases have different semantic mean-
ings, and orthogonal bases with similar rankings in different
domains are often more likely to represent similar seman-
tics. It is unreasonable to match important components in
one representation with unimportant components in another
representation. To this end, we propose Bases Mismatch
Penalization (BMP) to maintain this property during the
representation learning process. For two principal vectors

matched by Equation (4), an intuitive idea is that absolute
values of their weight matrices Ps and Pt should be similar:

regS↔TBMP (Us,Ut) =
∥∥|Ps| − |Pt|

∥∥2
F
. (5)

The reason why we use absolute values of Ps and Pt is that
two subspaces formed by the bases in the opposite directions
are the same one. By applying regS↔TBMP (Us,Ut) throughout
training, the orthogonal bases with similar rankings in their
representation subspaces are more likely to be matched.

3.5. Transferable Representation Learning

Our DAR model is trained in an end-to-end way based on
deep learning architectures. Both feature extractor Gf and
regressor Gy are trained by minimizing the supervised loss:

LL2(Gf , Gy) = E(xs
i ,y

s
i )∼P b loss(Gy(Gf (x

s
i )),y

s
i ),

(6)
where loss(·, ·) is the squared loss (L2), and (xs

i ,y
s
i ) ∼ P b

means sampling a batch of b instances from source domain.
With this batch and another batch of b instances sampled
from target domain, we define the RSD loss LRSD based on
the geometrical distance between source representation sub-
space S and target representation subspace T , and the BMP
loss LBMP based on matching the ordering of orthogonal
bases of S and T . The defined loss functions are:

LRSD(Gf ) = Exs
i∼P b,xt

i∼Qb

∥∥sinΘS↔T
∥∥
1
,

LBMP(Gf ) = Exs
i∼P b,xt

i∼Qb

∥∥|Ps| − |Pt|
∥∥2
F
.

(7)

The final goal is to learn transferable deep representations
through minimizing both RSD and BMP between domains.
DAR is achieved with the following optimization problem:

min
Gf ,Gy

LL2(Gf , Gy) + βLRSD(Gf ) + γLBMP(Gf ), (8)

where β, γ > 0 are trade-off hyper-parameters. The overall
architecture of the proposed approach is shown in Figure 3.
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4. Experiments
We evaluate our method with several state-of-the-art do-
main adaptation methods on three benchmarks. First, we
carefully observe the behavior of our model on dSprites,
an easy 2D synthetic dataset. Further, MPI3D, a chal-
lenging simulation-to-real 3D dataset, is employed to tes-
tify the ability of all methods to learn transferable repre-
sentations for regression tasks. Finally, the Biwi Kinect
Head Pose dataset, a real-world head pose estimation bench-
mark, is utilized to examine the practicability of all meth-
ods. The code is available at github.com/thuml/
Domain-Adaptation-Regression.

4.1. Datasets

dSprites1 (Higgins et al., 2017) is a standard 2D synthetic
dataset for deep representation learning. It is composed of
three domains each with 737,280 images: Color (C), Noisy
(N) and Scream (S). The example images are shown in
Figure 4. In every image, there are five factors of variations,
details illustrated in Table 1.

Table 1. Factors of variations in dSprites

Factor Possible Values Task

Shape square, ellipse, heart recognition
Scale 6 values in [0.5, 1] regression

Orientation 40 values in [0, 2π] regression
Position X 32 values in [0, 1] regression
Position Y 32 values in [0, 1] regression

Scream

Noisy

Color

Figure 4. Examples of dSprites.

In dSprites, there are four factors that can be employed
for regression tasks: scale, orientation, position X and Y.
However, it is knotty to determine the value of orientation:
(1) For a heart shape, possible values of orientation are 20
values in [0, 2π]; (2) For an ellipse shape, possible values of
orientation are 20 values in [0, π]; (3) For a square shape,
possible values of orientation are 20 values in [0, 12π]. Con-

1https://github.com/deepmind/
dsprites-dataset

sequently, the orientation regression task is excluded from
consideration. We evaluate all methods on six transfer tasks:
C→ N, C→ S, N→ C, N→ S, S→ C, and S→ N. And
sum of MAE on three regression tasks (scale, position X
and Y) is reported.

MPI3D2 (Gondal et al., 2019) is a simulation-to-real dataset
of 3D objects. It has three domains: Toy (T), RealistiC (RC)
and ReaL (RL). Each domain contains 1,036,800 images,
with mechanical platforms and example images shown in
Figure 5. And every image has seven factors of variations,
details shown in Table 2.

Table 2. Factors of variations in MPI3D

Factor Possible Values Task

Object Color 5 values recognition
Object Shape 6 values recognition
Object Size 2 values recognition
Camera Height 3 values recognition
Background Color 3 values recognition
Horizontal Axis 40 values in [0, 1] regression
Vertical Axis 40 values in [0, 1] regression

Toy

Real

Realistic

Synthetic

Real

Figure 5. Mechanical platforms and examples of MPI3D.

In MPI3D, there are two factors that can be employed for
regression tasks: a rotation about a vertical axis at the base
and a second rotation about a horizontal axis. We evaluate
all methods on six transfer tasks: RL→ RC, RL→ T, RC
→ T, RC→RL, T→RL, and T→RC. And sum of MAE
on two regression tasks (two rotations) is reported.

Biwi Kinect (Fanelli et al., 2013) is a real-world dataset
for head pose estimation. We divide the dataset into two
domains according to gender: Female (F) (5874 images)
and Male (M) (9804 images). Example images are shown
in Figure 6. And every image has 3 factors of variations,
details shown in Table 3.

In Biwi Kinect, there are three factors that can be employed
for regression tasks: pitch, yaw, and roll. We evaluate all

2https://github.com/rr-learning/
disentanglement_dataset

github.com/thuml/Domain-Adaptation-Regression
github.com/thuml/Domain-Adaptation-Regression
https://github.com/deepmind/dsprites-dataset
https://github.com/deepmind/dsprites-dataset
https://github.com/rr-learning/disentanglement_dataset
https://github.com/rr-learning/disentanglement_dataset
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methods on two transfer tasks: F→M and M→ F. And
sum of MAE on three regression tasks (pitch, yaw, and roll)
is reported.

Table 3. Factors of variations in Biwi Kinect

Factor Possible Values Task

Pitch values in [−92.044, 231.352] regression
Yaw values in [−87.7066, 246.684] regression
Roll values in [754.182, 1297.45] regression

Female

Male

Figure 6. Examples of Biwi Kinect.

4.2. Implementation Details

We use PyTorch3 with Titan V to implement our methods
and fine-tune ResNet-18 (He et al., 2016) pre-trained on
ImageNet (Russakovsky et al., 2015). On dSprites, there are
three regression tasks: scale, position X and position Y. On
MPI3D, there are two tasks: a rotation about a vertical axis
at the base and a second rotation about a horizontal axis.
And on Biwi Kinect, there are three tasks: pitch, yaw and
roll. We treat all tasks equally on each dataset. Labels are all
normalized to [0, 1] to eliminate the effects of diverse scales
in regression values, where the activation of the regressor
is Sigmoid. Tasks on one dataset share the same feature
extractor Gf and the same learning rate, respectively. For
the baseline methods for domain adaptation regression in
the shallow regime, we use the pretrained ResNet-18 to
extract representations as input to those methods.

Following the standard protocols for unsupervised domain
adaptation (Ganin et al., 2016), all labeled source samples
and unlabeled target samples participate in training. All
images are resized to 224 × 224, and data augmentation
methods are not used. We employ IWCV (Sugiyama et al.,
2007), a model selection method for domain adaptation, to
determine the hyper-parameters and the number of itera-
tions for all methods. The learning rates of layers trained
from scratch are set to 10 times those of fine-tuned lay-
ers. The batch size is b = 36. We use mini-batch SGD
with a momentum of 0.95 with the learning rate of 0.1 and
the progressive training strategies of DANN (Ganin et al.,
2016). All experiments run five times and average results

3http://pytorch.org

are reported.

Baseline Methods. We compare with state-of-the-art un-
supervised domain adaptation methods that can be applied to
regression problems. Some are reliable methods for domain
adaptation regression (DAR) in the shallow regime: Transfer
Component Analysis (TCA) (Pan et al., 2011), Joint Dis-
tribution Optimal Transport (JDOT) (Courty et al., 2017).
Some are excellent deep representation learning methods
designed for domain adaptation classification (DAC): Deep
Adaptation Network (DAN) (Long et al., 2015), Domain
Adversarial Neural Network (DANN) (Ganin et al., 2016),
Maximum Classifier Discrepancy (MCD) (Saito et al.,
2018), Adaptive Feature Norm (AFN) (Xu et al., 2019).

4.3. Results

Results on 2D Synthetic Dataset. The aim we evaluate
methods on the easy dataset, dSprites, is to test their ability
to capture the key object. The Mean Absolute Error (MAE)
of all tasks are summed up, that is, three regression tasks
(scale, position X and position Y) on dSprites with results in
Table 4. RSD+BMP substantially boosts the performance
and yields state-of-the-art results. There are obvious gains
on relatively difficult task C→ N and C→ S.

Results on 3D Simulation-to-Real Dataset. This chal-
lenging simulation-to-real dataset can help us evaluate how
well transferable representations are learned. MAE of two
tasks (rotation about two axes) are summed up, with results
in Table 5. RSD+BMP significantly outperforms existing
methods and yields state-of-the-art results. It is obvious that
on two difficult tasks T→ RL and T→ RC (synthetic to
real), only RSD cannot achieve satisfactory performance.
Further maintaining the geometrical properties of the deep
representations using LBMP can boost performance.

Results on Real-World Dataset. This real-world dataset
can help us evaluate the practicability of domain adaptation
regression methods. MAE of three tasks (pitch, yaw and
roll) are summed up, with results in Table 6. RSD+BMP
improves the performance of real-world datasets sharply
and yields state-of-the-art results.

4.4. Analyses

We perform extensive analytical experiments to further ver-
ify the effectiveness and practicability of our method.

Ablation Study. We observe the effectiveness of the two
regularizers in Tables 4, 5 and 6. Without BMP, RSD can
achieve great results in simple tasks. But when dealing with
some challenging tasks, RSD may break the geometrical
properties (the ordering of importance for each orthogonal
basis) of deep representations. Thus BMP does a good job
in the deep representation learning process. All two loss
terms are effective in boosting performances.

http://pytorch.org
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Table 4. Sum of MAE across three regression tasks on dSprites: unsupervised domain adaptation (ResNet-18).

Method C→ N C→ S N→ C N→ S S→ C S→ N Avg

ResNet-18 (He et al., 2016) 0.94 ± 0.06 0.90 ± 0.08 0.16 ± 0.02 0.65 ± 0.02 0.08 ± 0.01 0.26 ± 0.03 0.498
TCA (Pan et al., 2011) 0.94 ± 0.03 0.87 ± 0.02 0.19 ± 0.02 0.66 ± 0.05 0.10 ± 0.02 0.23 ± 0.04 0.498
DAN (Long et al., 2015) 0.70 ± 0.05 0.77 ± 0.09 0.12 ± 0.03 0.50 ± 0.05 0.06 ± 0.02 0.11 ± 0.04 0.377
DANN (Ganin et al., 2016) 0.47 ± 0.07 0.46 ± 0.07 0.16 ± 0.02 0.65 ± 0.05 0.05 ± 0.00 0.10 ± 0.01 0.315
JDOT (Courty et al., 2017) 0.86 ± 0.03 0.79 ± 0.02 0.19 ± 0.02 0.64 ± 0.05 0.10 ± 0.02 0.23 ± 0.04 0.468
MCD (Saito et al., 2018) 0.81 ± 0.09 0.81 ± 0.12 0.17 ± 0.12 0.65 ± 0.03 0.07 ± 0.02 0.19 ± 0.04 0.450
AFN (Xu et al., 2019) 1.00 ± 0.04 0.96 ± 0.05 0.16 ± 0.03 0.62 ± 0.04 0.08 ± 0.01 0.32 ± 0.06 0.523
RSD (ours) 0.32 ± 0.02 0.35 ± 0.02 0.16 ± 0.02 0.57 ± 0.01 0.08 ± 0.01 0.09 ± 0.02 0.258
RSD+BMP (ours) 0.31 ± 0.03 0.31 ± 0.03 0.12 ± 0.02 0.53 ± 0.01 0.07 ± 0.00 0.08 ± 0.01 0.237

Table 5. Sum of MAE across two regression tasks on MPI3D: unsupervised domain adaptation (ResNet-18).

Method RL→ RC RL→ T RC→ RL RC→ T T→ RL T→ RC Avg

ResNet-18 (He et al., 2016) 0.17 ± 0.02 0.44 ± 0.04 0.19 ± 0.02 0.45 ± 0.03 0.51 ± 0.01 0.50 ± 0.03 0.377
TCA (Pan et al., 2011) 0.17 ± 0.02 0.42 ± 0.01 0.19 ± 0.02 0.42 ± 0.02 0.50 ± 0.02 0.50 ± 0.02 0.373
DAN (Long et al., 2015) 0.12 ± 0.03 0.35 ± 0.02 0.12 ± 0.02 0.27 ± 0.02 0.40 ± 0.02 0.41 ± 0.04 0.278
DANN (Ganin et al., 2016) 0.09 ± 0.01 0.24 ± 0.04 0.11 ± 0.03 0.41 ± 0.03 0.48 ± 0.02 0.37 ± 0.04 0.283
JDOT (Courty et al., 2017) 0.16 ± 0.02 0.41 ± 0.01 0.16 ± 0.02 0.41 ± 0.02 0.47 ± 0.02 0.47 ± 0.02 0.353
MCD (Saito et al., 2018) 0.13 ± 0.02 0.40 ± 0.04 0.15 ± 0.02 0.45 ± 0.01 0.52 ± 0.02 0.50 ± 0.03 0.358
AFN (Xu et al., 2019) 0.18 ± 0.03 0.45 ± 0.02 0.20 ± 0.03 0.46 ± 0.03 0.53 ± 0.02 0.52 ± 0.04 0.390
RSD (ours) 0.10 ± 0.01 0.23 ± 0.03 0.11 ± 0.01 0.17 ± 0.02 0.41 ± 0.01 0.42 ± 0.01 0.242
RSD+BMP (ours) 0.09 ± 0.01 0.19 ± 0.02 0.08 ± 0.00 0.15 ± 0.03 0.36 ± 0.01 0.36 ± 0.02 0.205

Table 6. Sum of MAE across three regression tasks on Biwi Kinect

Method F→M M→ F

ResNet-18 (He et al., 2016) 0.38 ± 0.02 0.29 ± 0.01
TCA (Pan et al., 2011) 0.39 ± 0.01 0.31 ± 0.01
DAN (Long et al., 2015) 0.37 ± 0.01 0.28 ± 0.01
DANN (Ganin et al., 2016) 0.37 ± 0.02 0.30 ± 0.01
JDOT (Courty et al., 2017) 0.39 ± 0.01 0.29 ± 0.02
MCD (Saito et al., 2018) 0.37 ± 0.02 0.31 ± 0.02
AFN (Xu et al., 2019) 0.41 ± 0.02 0.32 ± 0.02
RSD (ours) 0.33 ± 0.02 0.27 ± 0.01
RSD+BMP (ours) 0.30 ± 0.02 0.26 ± 0.01

Representation Transferability. The A-distance (Ben-
David et al., 2010) is a measure for distribution discrepancy,
and thus we can use it to evaluate the transferability of repre-
sentations. A-distance is defined as dis(A) = 1−2ε, where
ε is the test error of a classifier trained to discriminate the
source from the target. Results of A-distance of represen-
tations trained with different methods are shown in Figure
7(a). It is verified that our method has a smaller A-distance
and can help learn transferable representations.

Representation Subspace Distance. We plot the trends
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Figure 7. (a) A-distance on C → N and C → S. (b) The trends of
Representation Subspace Distance (RSD) on C → N and C → S.

of RSD on C→ S and C→ N in Figure 7(b). We observe
that RSD in C→ S is harder to be reduced than in C→ N,
which coherently implies their transfer difficulties.

Feature Scale. We plot the average Frobenius norm of
source domain feature matrix in Figure 8(a). A key observa-
tion is that our method does not change feature scale.

Hyperparameter Sensitivity. MAE error on C→ S with
respect to different values of hyperparameter β and γ is
shown in Figure 8. Results confirm that our method is not
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Figure 8. (a) Feature scale of different methods; (b) Hyperparame-
ter sensitivity on transfer task C → S.

sensitive to hyperparameters.

Time Complexity. Time consumption of SVD in a batch
(of size b = 36) is acceptable (Chen et al., 2019). In one it-
eration of our method, three SVD operations are conducted.
The training time of one iteration for source only model
and our model are 0.203 seconds and 0.229 seconds, respec-
tively. The extra time overhead is acceptable.

5. Conclusion
This paper studies the domain adaptation regression (DAR)
problem in the deep representation learning regime. We find
that regression performances are not robust to feature scal-
ing. To tackle this challenge, we close the domain gap based
on orthogonal bases in representation subspace instead of
instance representations by exploring the Riemannian ge-
ometry of Grassmann manifold. Two novel regularizers are
proposed to achieve the goal. RSD, a general metric on the
Grassmannian, is proposed to assist in learning transferable
representation. BMP, a crucial regularizer for every compo-
nent in representation matrices, is proposed to maintain the
geometrical structures of deep representations. With these
regularizers, transferable representations are learned during
training, and sharp gains are observed on regression tasks.
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